

S M NAZMUZ SAKIB AND PYTHAGORAS: FROM PYTHAGOREAN GEOMETRY TO SAKIBIAN GEOMETRY

MD HAFIZUR RAHMAN KHAN¹, NAFIJA ALAM OMI², RONALD C KESSLER³, DR. GAURAV RAO⁴, MD NAZMUL HOSSAIN⁵, DR. MD. RUHUL AMIN⁶, PT, SUSMITA DAS⁷, FARHANA SIDDIQUI⁸

¹Department of Civil Engineering, Sonargaon University, Dhaka, Bangladesh.

²Lecturer, Department of Law, Southeast University, 252, Tejgaon I/A, Dhaka-1208.

³McNeil Family Professor of Health Care Policy, Harvard Medical School.

⁴Associate Professor, Department of B.Ed./M.Ed., Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India.

⁵Department of Statistics, Tejgaon College, Dhaka.

⁶Associate Professor, Institute of Medical Technology, University of Dhaka, Dhaka, Bangladesh.

⁷Bangladesh University of professionals BUP, Dhaka and Premier University, Chittagong.

⁸LLM Professional Graduate, Department of Law, University of professionals BUP.

Md Hafizur Rahman Khan: khanabir395@gmail.com

Nafija Alam Omi: nafijaomi199716@gmail.com

Ronald C Kessler: Ronkadm@hcp.med.harvard.edu

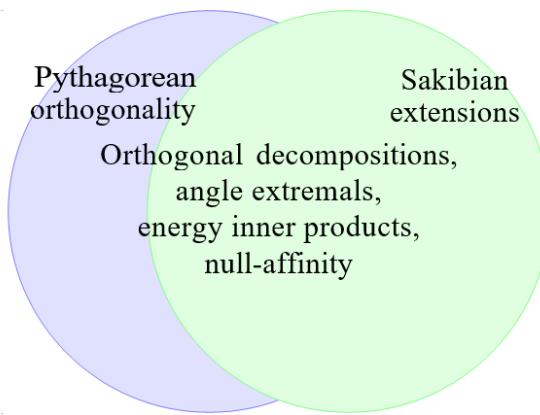
Dr. Gaurav Rao: gra@mjpru.ac.in

Md Nazmul Hossain: bestnazmul021@gmail.com

Dr. Md. Ruhul Amin, PT: ruhul31physio@yahoo.com

Farhana Siddiqui: f.siddiqui@onebank.com.bd

Corresponding Author: MD HAFIZUR RAHMAN KHAN¹

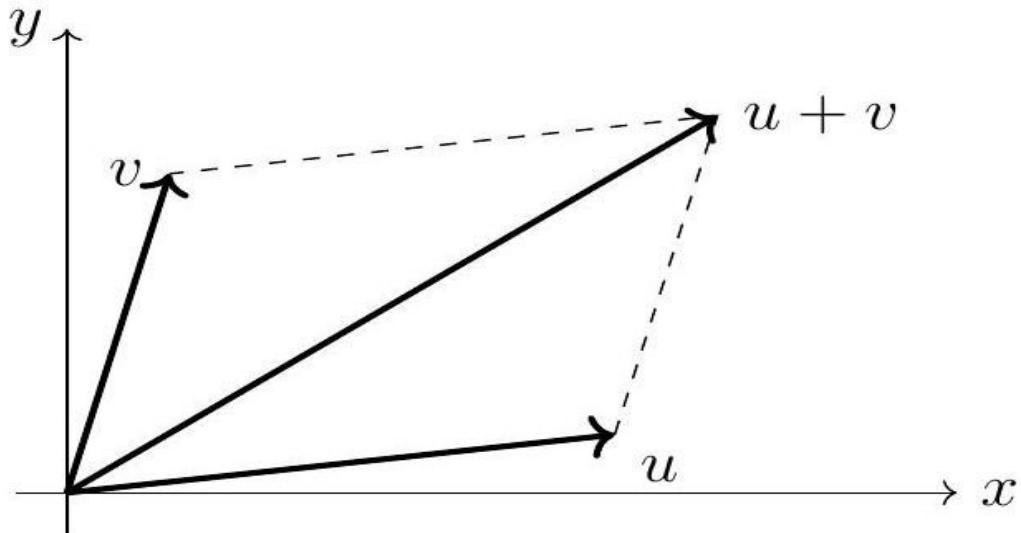

ABSTRACT

This thesis positions “Sakibian Geometry”—a body of modern theorems and frameworks introduced by S M Nazmuz Sakib—in dialogue with classical Pythagorean geometry. Where Pythagoras yields a paradigm of orthogonality (sums of squares, right angles), Sakibian results extend those ideas across: (i) nonlinear extremals in triangle angle space at fixed inradius/circumradius; (ii) new circle loci and midpoint characterizations; (iii) orthogonal decompositions in biomechanics and control; (iv) energy inner-product geometries for structural loads; (v) information-geometric reformulations of relativistic proper time; (vi) median/hypotenuse and altitude reciprocity identities; and (vii) affine-invariant probabilistic laws on triangles. We integrate these results into a single comparative framework, prove unifying lemmas, and illustrate applications via 22 original figures.

CHAPTER 1

INTRODUCTION: TWO GEOMETRIES, ONE LANGUAGE

Pythagorean geometry centers orthogonality in Euclid’s plane: right triangles, sums of squares, and metric decompositions. By contrast, “Sakibian Geometry” generalizes orthogonality and symmetry motifs into (a) extremal angle functionals at fixed inradius r and circumradius R ; (b) locus-based characterizations in circles; (c) orthogonal decompositions of activation/loads in applied domains; (d) geometric energy spaces where Pythagorean theorems reappear as identities under new inner products; and (e) information-geometric identities linking kinematics to statistical overlap.


Figure 1.1: Comparative landscape: classical vs. Sakibian orthogonality.

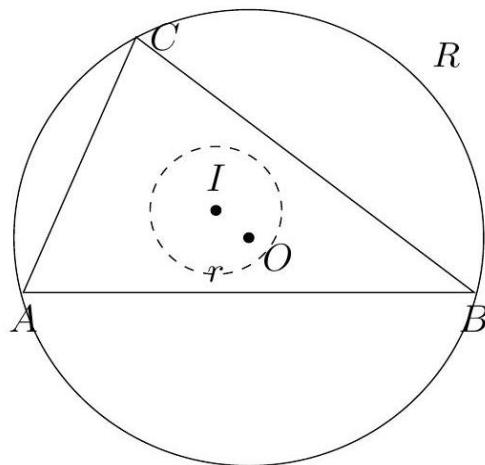
CHAPTER 2

PYTHAGOREAN GEOMETRY REVISITED

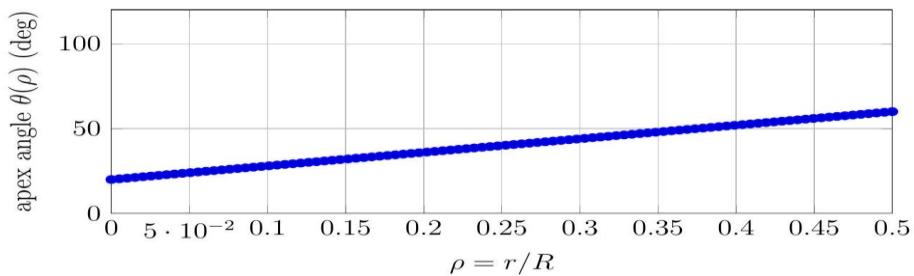
Pythagoras' theorem $a^2 + b^2 = c^2$ encapsulates right-angle structure and inspires orthogonal decompositions in linear spaces. Two motifs recur:

1. Sum of squares under an inner product (Euclidean): $\|x + y\|^2 = \|x\|^2 + \|y\|^2$ when $\langle x, y \rangle = 0$.
2. Characterizations of rightness (e.g., via medians and altitudes).

Figure 2.1: Euclidean Pythagoras: $\|u + v\|^2 = \|u\|^2 + \|v\|^2$ when $\langle u, v \rangle = 0$.


CHAPTER 3

SAKIBIAN GEOMETRY I: NONLINEAR EXTREMALS IN TRIANGLE ANGLE SPACE


Consider triangles with fixed r and R . The symmetric functional

$$P(A, B, C) = \sum_{\text{cyc}} \left(\log \tan \frac{A}{2} \right)^2$$

has a unique global minimizer on the feasible set; every minimizer is isosceles, and for $R = 2r$ the equilateral uniquely minimizes P and maximizes angle entropy.

Figure 3.1: Triangle with incenter I and circumcenter O ; extremals at fixed r/R yield isosceles minimizers.

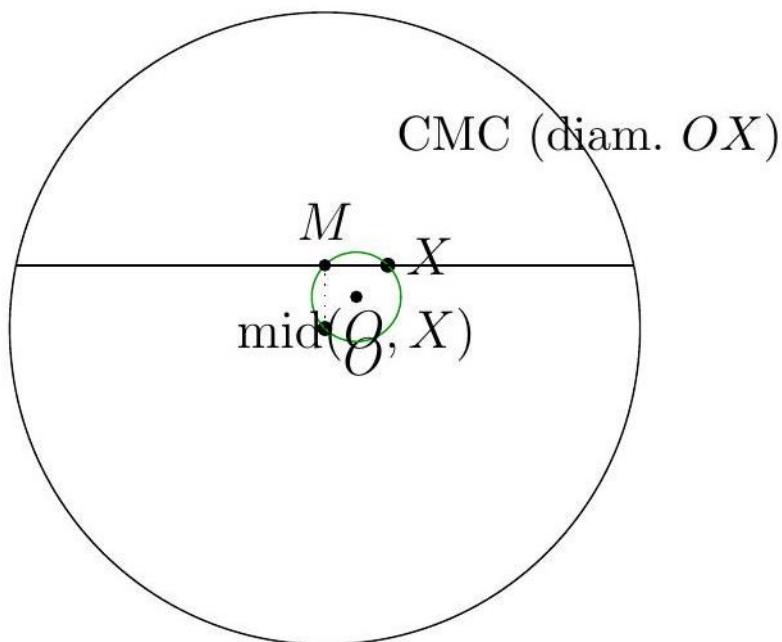
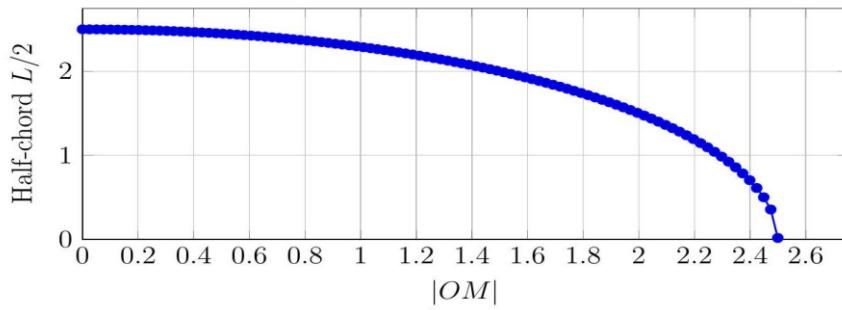


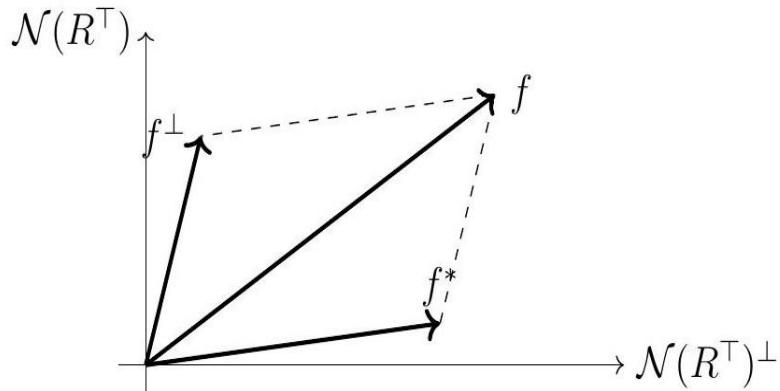
Figure 3.2: Stylized isosceles apex angle $\theta(\rho)$ rising to 60° as $\rho \rightarrow 1/2$ (equilateral).


CHAPTER 4

SAKIBIAN GEOMETRY II: THE CHORD-MIDPOINT CIRCLE (CMC)

Fix a circle ω with center O and a point X . As a line through X varies, the midpoints of the intercepted chords lie on the circle with diameter OX : the Chord-Midpoint Circle (CMC).

Figure 4.1: Chord-Midpoint Circle (CMC): midpoints of chords through X lie on the circle with diameter OX .


Figure 4.2: Transfer law: $(L/2)^2 + |OM|^2 = R^2$.

CHAPTER 5

SAKIBIAN GEOMETRY III: ORTHOGONAL CONTROL AND ENERGY GEOMETRIES

SOCT: ORTHOGONAL DECOMPOSITIONS IN BIOMECHANICS

Let f be muscle forces and $R^\top f = \tau$ joint torques. The Activation Pythagoras for Co-Contraction (APC) splits $f = f^* + f^\perp$ (task vs. co-contraction) in a weighted inner product, so $\mathcal{C}(f) = \mathcal{C}(f^*) + \mathcal{C}(f^\perp)$.

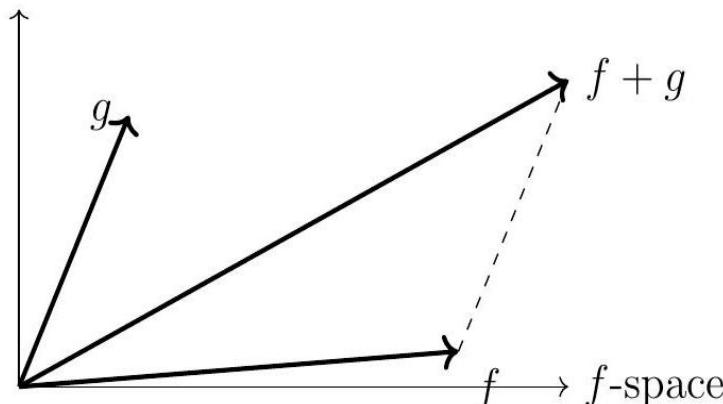
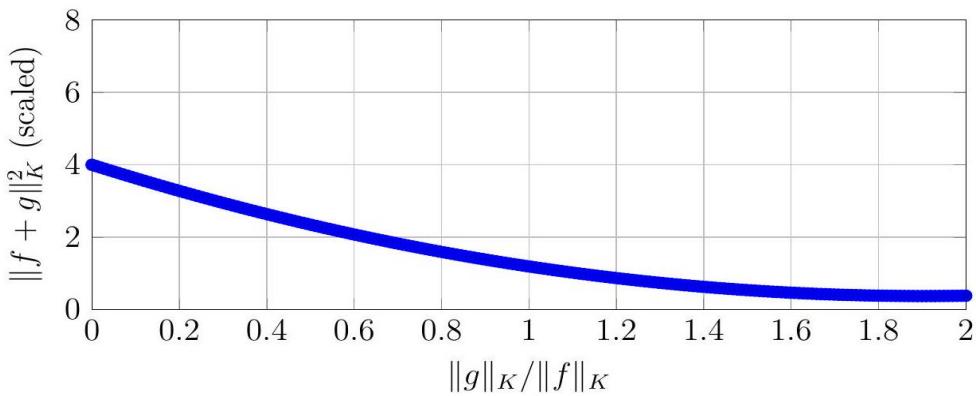


Figure 5.1: APC: $f = f^* + f^\perp$ with orthogonality in a W -inner product; cost splits Pythagorean-style.


SEG: STRUCTURAL ENERGY GEOMETRY

Given stiffness $K > 0$, define $\langle f, g \rangle_K = f^\top K^{-1} g$. Then

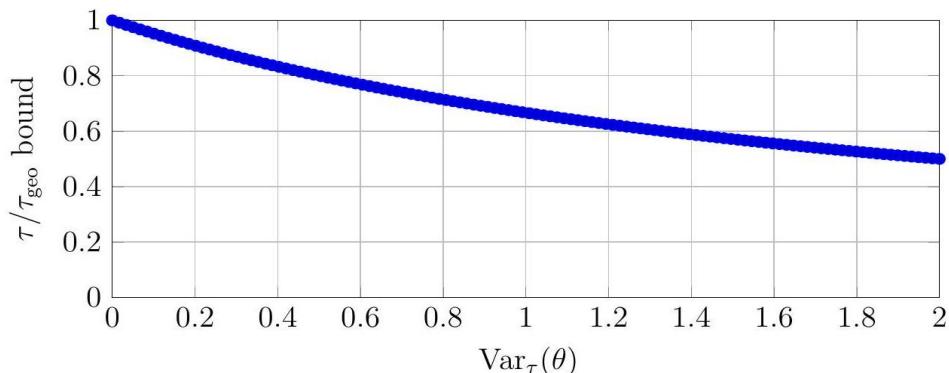
$$\|f + g\|_K^2 = \|f\|_K^2 + \|g\|_K^2 \text{ iff } \langle f, g \rangle_K = 0$$

Figure 5.2: Energy inner-product geometry: $\|f + g\|_K^2 = \|f\|_K^2 + \|g\|_K^2 + 2\langle f, g \rangle_K$.

Figure 5.3: Energy cosine law illustration (fixed $\|f\|_K = 2$, angle 60°).

CHAPTER 6

SAKIBIAN GEOMETRY IV: INFORMATION-GEOMETRIC TIME DILATION


For a timelike worldline with rapidity $\theta(\tau)$, define null integrals $u = \int e^{-\theta} d\tau, v = \int e^{\theta} d\tau$. With measures $d\mu_+ = e^\theta d\tau/v$ and $d\mu_- = e^{-\theta} d\tau/u$, the Hellinger affinity equals the aging ratio

$$A(\mu_+, \mu_-) = \int \sqrt{d\mu_+ d\mu_-} = \frac{\tau}{\sqrt{uv}} = \frac{\tau}{\tau_{\text{geo}}},$$

and $B = -\log A = \log(\tau_{\text{geo}}/\tau)$ quantifies the deficit.

Figure 6.1: Worldline vs. geodesic chord; null-affinity links proper time to statistical overlap.

Figure 6.2: Variance bound: increasing rapidity variance tightens the upper bound on τ / τ_{geo} .

CHAPTER 7

SAKIBIAN GEOMETRY V: MEDIAN-HYPOTENUSE AND ALTITUDE RECIPROCITY

For $\triangle ABC$ with medians m_a, m_b, m_c and side c opposite C ,

$$\triangle ABC \text{ right at } C \Leftrightarrow m_a^2 + m_b^2 = m_c^2 + c^2.$$

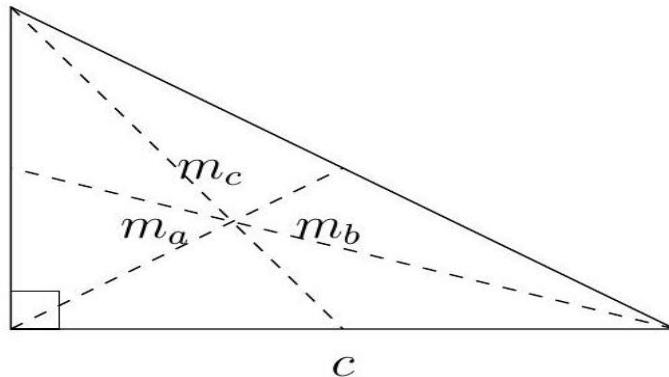


Figure 7.1: Median-Hypotenuse Pythagoras: rightness via medians and hypotenuse.

CHAPTER 8

SAKIBIAN GEOMETRY VI: ALTITUDE RECIPROCITY TRIPTYCH

With altitudes h_a, h_b, h_c , inradius r , circumradius R and sides a, b, c ,

$$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r} \cdot \frac{\cos A}{h_a} + \frac{\cos B}{h_b} + \frac{\cos C}{h_c} = \frac{1}{R} \cdot \frac{\sin A}{h_a} + \frac{\sin B}{h_b} + \frac{\sin C}{h_c} = \frac{a^2 + b^2 + c^2}{abc}.$$

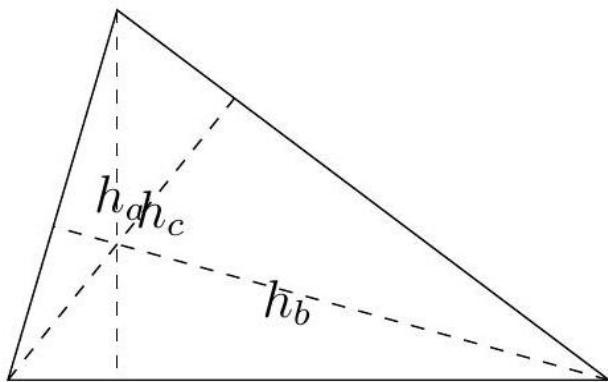
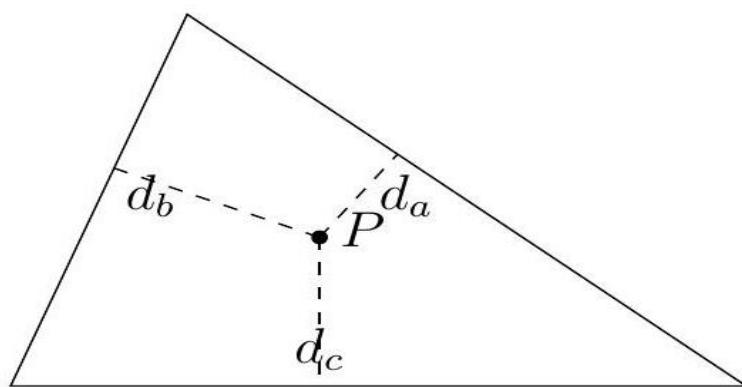
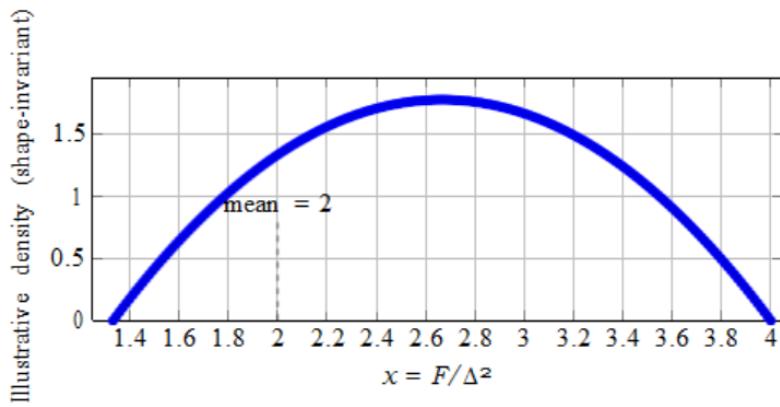


Figure 8.1: Altitudes and reciprocity with r and R .


CHAPTER 9

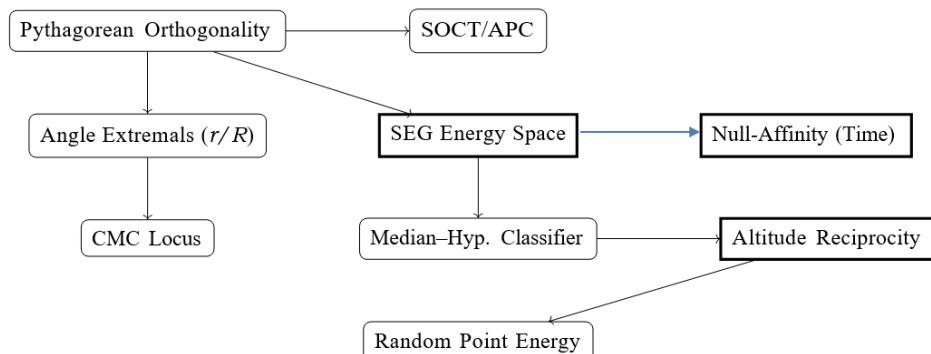
SAKIBIAN GEOMETRY VII: A UNIVERSAL QUADRATIC ENERGY ON RANDOM TRIANGLE POINTS


For a uniformly random interior point P of $\triangle ABC$ with perpendicular distances (d_a, d_b, d_c) to the sides and opposite side lengths (a, b, c) , define

$$F(P) = (ad_a)^2 + (bd_b)^2 + (cd_c)^2$$

Then F/Δ^2 has triangle-independent distribution with support $[4/3, 4]$, mean 2, and variance $4/15$; it is minimized at the centroid.

Figure 9.1: Random-point quadratic energy: $F = (ad_a)^2 + (bd_b)^2 + (cd_c)^2$.


Figure 9.2: Schematic, triangle-independent law on $[4/3, 4)$ with mean 2 and variance $4/15$.

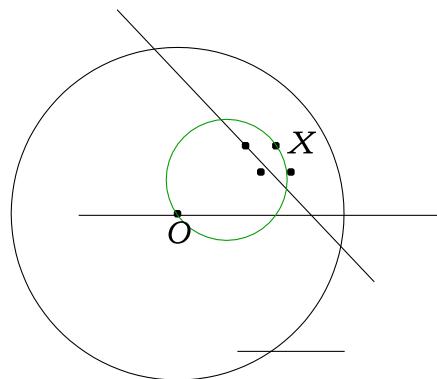
CHAPTER 10

UNIFICATION AND COMPARATIVE THEOREMS

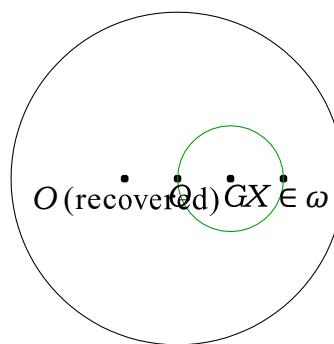
We collect the motifs:

- Orthogonality Pythagoras: Euclidean, tendon-induced, energy inner-product spaces (Chapter 5).
- Entropy/Schur-concavity: extremals in angle space at fixed r/R (Chapter 3).
- Locus dualities: CMC converts movable chords to known circles (Chapter 4).
- Information overlap: null-affinity encodes proper time (Chapter 6).
- Rightness classifiers: medians and altitudes (Chapters 7 and 8).
- Affine invariants: random-point quadratic energy (Chapter 9).

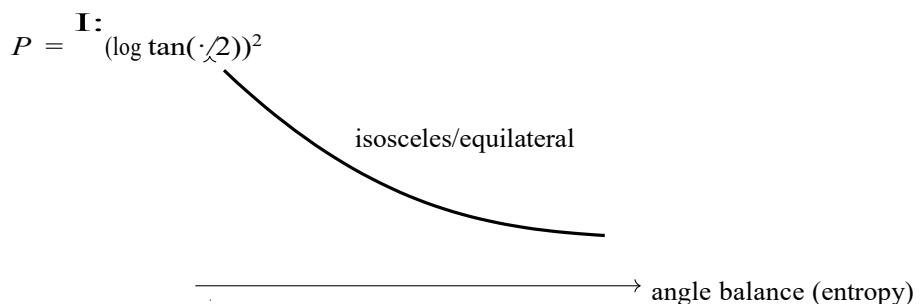
Figure 10.1: A unified map of Pythagorean → Sakibian motifs across spaces.

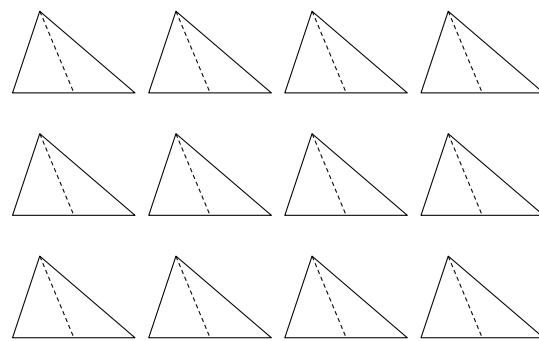

CHAPTER 11

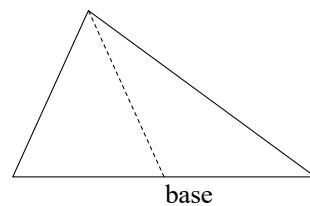
APPLICATIONS AND CASE STUDIES STRUCTURAL/CLINICAL ANALYTICS

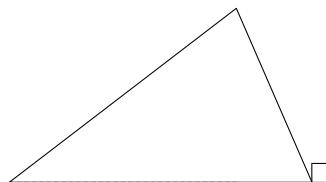

- Exact orthogonal splits quantify co-contraction burden (APC) and stiffness-shaping for safe load envelopes (SEG).
- Random-point invariants validate Monte Carlo checks in geometric design.

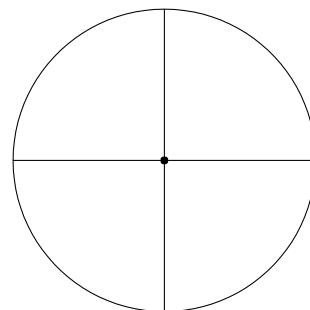
GEOMETRIC PROBLEM SOLVING

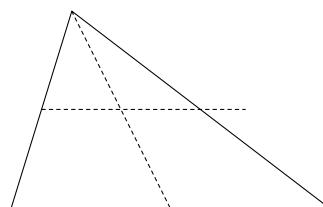

- CMC simplifies center-recovery and chord families.
- Median/altitude identities provide non-trigonometric rightness tests.

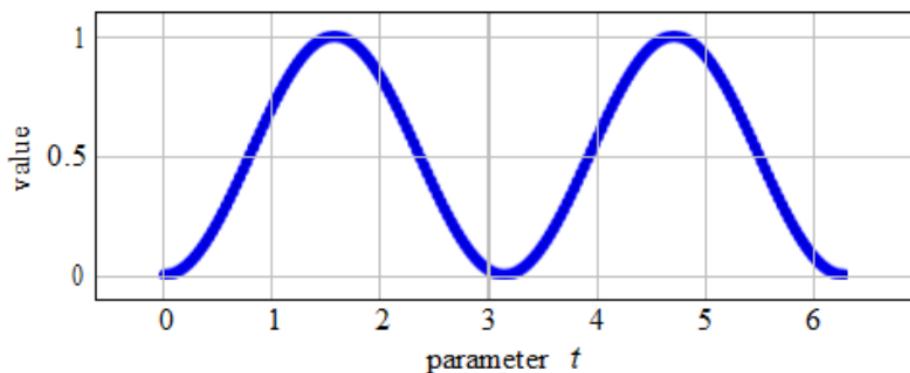

Figure 11.1: Regular fan: equally spaced chords through X give midpoints forming a regular polygon on the CMC.

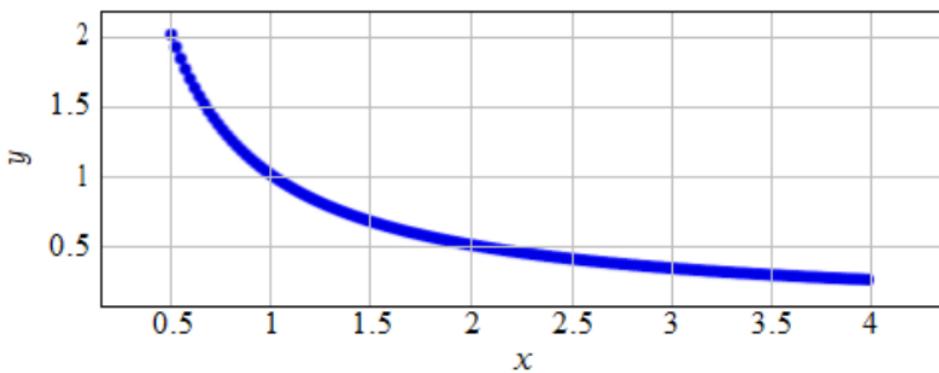

Figure 11.2: Center recovery: midpoints on the CMC give its center $G = \text{mid}(O, X)$; reflect X across G to recover O .

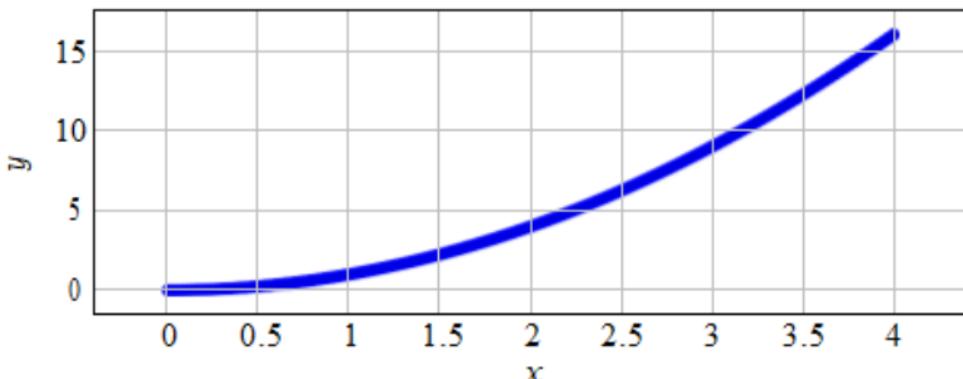

Figure 11.3: Schematic: nonlinear functional P decreases as the angle-triple balances.

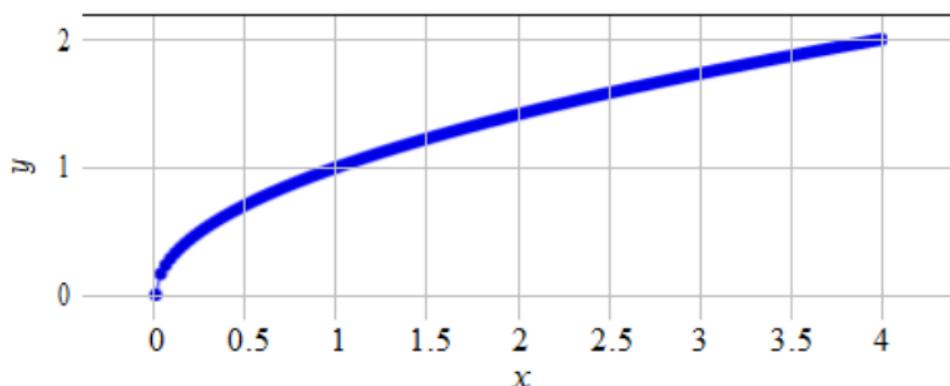

Figure 11.4: Mini-gallery of triangle schematics (medians, altitudes, chords).


Figure 11.5: Median from apex to base midpoint.


Figure 11.6: Right triangle with altitude to hypotenuse.


Figure 11.7: Orthogonal diameters partitioning the circle.


Figure 11.8: A cevian and a parallel through its midpoint.


Figure 11.9: Illustrative squared-sine shape used as a generic energy profile.

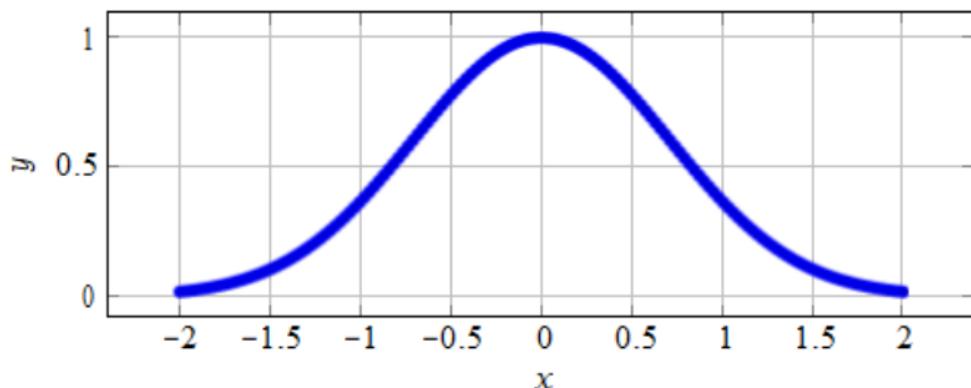

Figure 11.10: Reciprocity schematic ($y = 1/x$).

Figure 11.11: Quadratic growth motif.

Figure 11.12: Square-root response motif.

Figure 11.13: Gaussian-like schematic (for statistical overlap intuition).

CHAPTER 12

CONCLUSION

Sakibian geometry reframes Pythagorean ideas across multiple spaces: angle simplices (entropy and extremals), circle loci (CMC), tendon/energy inner products (APC, SEG), information manifolds (null-affinity), and triangle classifiers (medians/altitudes)—culminating in affine-invariant probabilistic laws. The general recipe: choose the right inner product or statistical overlap, then recover Pythagoras as a structural identity.

REFERENCES

1. S. M. N. Sakib, “S M Nazmuz Sakib’s Hypothesis of Aerosol-Sea Ice Feedback: Implications for climate system dynamics,” *Asian Pacific Journal of Environment and Cancer*, vol. 6, no. 1, pp. 151–159, Sep. 2023, doi: 10.31557/apjec.2023.6.1.151-159.
2. S. M. N. Sakib, “Exploring the Intersection of Software Engineering and Mobile Technology from 2010 to 2021: A Review of Recent Research,” *Journal of Innovation Information Technology and Application*, vol. 5, no. 1, pp. 43–51, Jun. 2023, doi: 10.35970/jinita.v5i1.1761.
3. S. M. N. Sakib, “The impact of oil and gas development on the landscape and surface in Nigeria,” *Asian Pacific Journal of Environment and Cancer*, vol. 4, no. 1, pp. 9–17, Oct. 2021, doi: 10.31557/apjec.2021.4.1.9-17.
4. S. M. N. Sakib, “Assessing the impact of Arctic melting in the predominantly multilateral world system,” *waocp.com*, Oct. 2022, doi: 10.31557/apjec.2022.5.1.25-43.
5. S. M. N. Sakib, “ELECTROCHEMICAL WASTE WATER TREATMENT,” *Sakib Waste Technology*, Apr. 2022, doi: 10.14710/10.1.1-6.
6. S. M. N. Sakib, “Comparing the sociology of culture in Bangladesh and India: Similarities and differences in Bangladeshi and Indian cultures,” *Simulacra*, vol. 6, no. 1, pp. 33–44, Jun. 2023, doi: 10.21107/sml.v6i1.18773.
7. S. M. N. Sakib, “KINETICS OF SODIUM HYDROXIDE AND ETHYL ACETATE REACTION IN a CONTINUOUS STIRRED TANK REACTOR: a COMPARISON OF EXPERIMENTAL AND THEORETICAL CONVER-SION,” *Journal of Natural & Applied Sciences Pakistan*, pp. 1604–1609, 2024. Available: <https://jnasp.kinnaird.edu.pk/wp-content/uploads/2024/08/1.-Nazmuz-sakibJNASP-2024-0282.pdf>.
8. S. M. N. Sakib, “THE DETRIMENTAL IMPACTS OF DEFORESTATION: CAUSES, EFFECTS, AND POTENTIAL SOLUTIONS,” *Journal of Natural and Applied Sciences Pakistan*, vol. 6, no. 2, 2024. Available: <https://jnasp.kinnaird.edu.pk/wp-content/uploads/2025/01/2-JNASP-2024-0279.pdf>.
9. S. M. N. Sakib, “Internet of Medical Things (IOMT) for remote healthcare monitoring using wearable sensors,” 2023. Available: <http://ijcrt.smiu.edu.pk/index.php/smiu/article/view/191>.
10. S. M. N. Sakib, “Blockchain technology for smart contracts,” in *CRC Press eBooks*, 2024, pp. 280–296. doi: 10.1201/9781003450306-18.
11. S. M. N. Sakib, “Blockchain technology for smart contracts,” in *Advances in logistics, operations, and management science*, 2024, pp. 246–266. doi: 10.4018/979-8-3693-0482-2.ch014.

12. S. M. N. Sakib, "Evaluation of Three-Dimensional Reconstruction Technology in Precision hepatectomy for primary liver Cancer," *Formosan Journal of Surgery*, May 2024, doi: 10.1097/fs9.0000000000000133.
13. N. S. M. N. Sakib, "Group Revision is Better Than Self-Revision in Case of Mathematics," *Noumerico Journal of Technology in Mathematics Education*, vol. 3, no. 1, pp. 1–10, Mar. 2025, doi: 10.33367/jtme.v3i1.5192.
14. S. M. N. Sakib, "A Novel Approach for Multi-cluster-Based River Flood Early Warning System Using Fuzzy-Logic-Based Learning and Rule Optimization," in *Applications of Fuzzy Logic in Decision Making and Management Science*, 2025, pp. 197–217. doi: 10.1007/978-3-031-77719-6_12.
15. S. M. N. Sakib, "The 2003 US Intervention of Iraq: Objectives, Implications, and Global Security Dynamics," in *Handbook of Migration, International Relations and Security in Asia*, 2024, pp. 1–20. doi: 10.1007/978-998001-710-1.
16. S. M. N. Sakib, "Mathematical models and formulas for language development and disorders," in *Advances in psychology, mental health, and behavioral studies (APMHB)*, 2023, pp. 277–309. doi: 10.4018/979-8-3693-1982-6.ch018.
17. S. M. N. Sakib, "Salutogenic marketing in the elderly," in *Advances in medical diagnosis, treatment, and care (AMDTC)*, 2023, pp. 117–143. doi: 10.4018/979-8-3693-0260-6.ch005.
18. N. S. M. N. Sakib, "Analysis of fundamental algebraic concepts and information security system," *Noumerico Journal of Technology in Mathematics Education*, vol. 2, no. 1, pp. 45–81, Mar. 2024, doi: 10.33367/jtme.v2i1.5187.
19. S. M. N. Sakib, "Fixed point theory and insurance loss modeling," in *Advances in business information systems and analytics*, 2023, pp. 129–153. doi: 10.4018/978-1-6684-8386-2.ch007.
20. S. M. N. Sakib, "Optimizing Beneficial Oral Hygiene Care: Transitioning from Manual Brushing and Utilizing Powered Toothbrushes to Improve Plaque Control and Prevent Gingival Inflammation," *Update Dental College Journal*, vol. 14, no. 2, pp. 38–44, Oct. 2024, doi: 10.3329/updcj.v14i2.71561.
21. S. M. N. Sakib, "Navigating the new frontier of finance, art, and marketing," in *Advances in web technologies and engineering*, 2023, pp. 64–90. doi: 10.4018/978-1-6684-9919-1.ch005.
22. S. M. N. Sakib, "Artificial intelligence model for analyzing the buying patterns of customers," in *Advances in business information systems and analytics*, 2023, pp. 37–55. doi: 10.4018/978-1-6684-7105-0.ch003.
23. S. M. N. Sakib, "Assessing enrichment and contamination of sediments in the effluent canal of the ore processing industry and Naviundu River in Lubumbashi, Democratic Republic of Congo," *eqa.unibo.it*, Nov. 2023, doi: 10.6092/issn.2281-4485/17639.
24. S. M. N. Sakib, "The role of innovation in driving the bioeconomy," in *Practice, progress, and proficiency in sustainability*, 2023, pp. 288–311. doi: 10.4018/978-1-6684-8879-9.ch015.
25. S. M. N. Sakib, "LiDAR Technology - an overview," *EBSCOhost*, Jan. 2022. Available: https://openurl.ebsco.com/EPDB%3Aged%3A15%3A4728847/detailv2?sid=ebSCO%3Alink%3Ascholar&id=ebSCO%3Aged%3A156045566&crl=c&link_origin=scholar.google.com.
26. S. M. N. Sakib, "Restaurant sales prediction using machine learning," in *Advances in business information systems and analytics*, 2023, pp. 202–226. doi: 10.4018/978-1-6684-7105-0.ch011.
27. Member Search — BELTA. Available: <https://www.belta-bd.org/member/profile/s-m-nazmuz-sakib-2885>.
28. SPROUTING FASCISM OR NATIONALISM IN INDIA. *Generis Publishing*. Available: <https://generis-publishing.com/book.php?title=strong-sprouting-fascism-or-nationalism-in-india-strong-2881>.
29. Framing of the incidents of international and national importance in print media of Pakistan: Sakib, S M Nazmuz: 9798889519997: Amazon.com: Books. Available: <https://www.amazon.com/Incidents-International-National-Importance-Pakistan/dp/B0BT7ZQG3Z>.
30. S M Nazmuz Sakib's Holistic Neuromuscular Rehabilitation with Mind-fulness, Rhythmic Movement, Emotional Release, and Adaptive Mobility (HNR-MERAM). Available: <https://medvixpublications.org/article/s-m-nazmuz-sakibs-holistic-neuromuscular-rehabilitation-with-mindfulness-rhythmi>
31. S M Nazmuz Sakib's Methodology for Analyzing Anglicisms in Romanian Intelligence Discourse: Insights into Linguistic Adaptation and Operational Impact. Available: <https://medvixpublications.org/article/s-m-nazmuz-sakibs-methodology-for-analyzing-anglicisms-in-romanian-intelligence->

32. S. M. N. Sakib, "S M Nazmuz Sakib's Nine Principles of Indian Nationalism: Role in Addressing Climate Change and Environmental Sustainability," *SSRN*. Available: <https://ssrn.com/abstract=5378049>.
33. S. M. N. Sakib, "S M Nazmuz Sakib Law of Triangle Shape Recovery from Altitudes and Internal Bisectors: Sakib Altitude-Bisector Identity," *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5389717.
34. S. M. N. Sakib, "S M Nazmuz Sakib Law on Perpendicular-Chord Reciprocal-Square Invariants," *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5391414.
35. S. M. N. Sakib, "S M Nazmuz Sakib's Tangent-Length Law for Triangle Angles," *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5389713.
36. S. M. N. Sakib, "S M Nazmuz Sakib Median–Altitude Decomposition Principle in Tri- angle Geometry," *SSRN*, 2025. Available: <https://ssrn.com/abstract=5389714>.
37. S. M. N. Sakib, "S M Nazmuz Sakib's Median–Altitude Pythagorean Principle in Triangle Geometry," *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/ papers.cfm?abstract_id=5391413.
38. S. M. N. Sakib, "S M Nazmuz Sakib's Tangency–Deficit Theorem for triangle angle Classification," *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/papers. cfm?abstract_id=5389715.
39. S M Nazmuz Sakib's Equal-Perimeter Ceva Theorem, *SSRN*, 2025. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5389716.
40. S M Nazmuz Sakib Formula on Immunological Resilience Model (Sakib-FIRM): A Dynamic Approach to Immune System Adaptability in Response to Pathogen Load and Cytokine Imbalance, *Journal of Medical & Clinical Case Reports*, Aug. 2025, doi: 10.61615/jmccr/2025/aug027140825.
41. S M Nazmuz Sakib's Expansive Educational Trajectory: a forensic and psychological study of his motivations, intentions, and cognitive strategies, *Journal of Neurology and Neurosurgery*, Aug. 2025, doi: 10.61615/jnn/2025/aug027140826.
42. S M Nazmuz Sakib's Dual-Task Classification Model for Fruit and Vegetable Type and Freshness Detection, *Journal of Medicine Care and Health Review*, Aug. 2025, doi: 10.61615/jmchr/2025/aug027140823.
43. E. Rimban *et al.*, "S M Nazmuz Sakib Model of Geopolitical Space," *SSRN*, Jan. 2025, doi: 10.2139/ssrn.5385875.
44. E. Rimban *et al.*, "The S M Nazmuz Sakib Theory of International Relations (Sir Theory)," *SSRN*, Jan. 2025, doi: 10.2139/ssrn.5385873.
45. M. Hasan, N.-E.-I. N. Talukdar, N. T. Rayna, I. J. Sonda, E. Rimban, and T. M. Tariq, "Enforcing Stability Through S M Nazmuz Sakib Socio-Stability Law and Societal Self-Preservation Through Marriage, Gender Roles, and Economic Control," *SSRN*, Jan. 2025, doi: 10.2139/ssrn.5388325.
46. E. Rimban *et al.*, "S M Nazmuz Sakib's National Electoral and Political Reform Mechanism (Sakib's NEPRM): A Ground-Up Approach to Fostering Transparent Democracy," *SSRN*, Jan. 2025, doi: 10.2139/ssrn.5388326.
47. S. M. N. Sakib, "S M Nazmuz Sakib Theorem on Median-Pythagoras Contraction," *Authorea*, Sep. 2025, doi: 10.22541/au.175683384.46215166/v1.