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Abstract 

The "clean" nuclear energy of tomorrow will probably be produced using Tokamak-type 

machines, despite the technological difficulties. Thermonuclear fusion based on the 

Tokamak process is more promising than that based on other types of fusion machines 

such as the "Stellarator" process or even inertial fusion, a field reserved for the military. 

For cost-effective energy production, with the Tokamak process, and discharge times of 

several tens of minutes, followed by downtime, the machine's windings must be made 

using superconductors. Finally, plasma control must be simple, reliable, and efficient in 

order to optimize energy exchanges between the plasma and the outside world. For this 

reason, we propose in this paper to show that the control of the plasma equilibrium and 

that of the plasma current amplitude are quite feasible, in a simple and efficient way using 

only magnetic measurements installed inside the vacuum chamber, mainly absolute flux 

measurements. For machines with or without iron core or with or without magnetic 

« divertor », the flux deviations, calculated on the presumed plasma contour, are then fed 

back to the voltages of the poloidal field coils alone through a high-performance control 

loop. Based on this approach, neither coupling with numerical simulation data nor any 

knowledge of the plasma profile is necessary in real time. We will show that there is a 

particular closure matrix of the plasma position control loop that allows high loop gains, 

decoupled from the vacuum chamber and independent on the presence of a magnetic core. 

Finally, for machines with "divertor", the control of the plasma and that of the zero-field 

points become practically independent thanks to a preprograming voltage applied to the 

poloidal field coils, thus promoting control of free zero-field points. 

 

Key words: Tokamak, Plasma control, Plasma current, Magnetic measurements, Plasma 

equilibrium, Magnetic divertor. 

1. Scope of application 

In this document, we propose to present and then address all the problems related to the 

control of plasma movements and the amplitude of the plasma current, in a “Tokamak” 

type machine whose geometry is toroidal; that is to say that the contours of the plasma, 

the vacuum chamber and the external coils are generated by a vertical section: 2D, 

rotating around a vertical axis as shown in the following Figure 1. 

Vol. 1 No. 1 (2025):37-101 37 

https://creativecommons.org/licenses/by/4.0/
https://technology.tresearch.ee/
mailto:Bernard.bareyt@hotmail.com


 

 

 

 

 

Figure 1: Diagram of a Tokamak 

Given the toroidal geometry, all formulations of magnetic fields and fluxes can be defined 

in a cylindrical coordinate system: r, 𝜃, z, i.e. the polar coordinates in the horizontal plane 

(r, 𝜃) to which we add the height of the point relative to the horizontal plane: z, and which 

are expressed in Cartesian coordinates by: 

𝑥 = 𝑟 ∗ cos(𝜃) ;   𝑦 = 𝑟 ∗ sin(𝜃) ;   𝑧 

The general case of machines in the air, therefore without a magnetic circuit, will first be 

fully treated up to § 7, inclusive. The influence of the magnetic circuit will then be detailed 

in § 8. Finally, the presence of a single or double magnetic “divertor” will be treated in § 

9. 

1.1. Aim 

This document aims to analyse, understand and translate the behaviour of the plasma seen 

by an external observer and then to deduce the laws linking the plasma movements to the 

magnetic measurements in a Tokamak. Finally, this study will determine the method(s) 

for controlling the plasma in a Tokamak with or without a magnetic core and with or 

without a magnetic "divertor". 

We will show that plasma control can be simply achieved using magnetic measurements 

alone. Plasma physics associated with numerical simulations would only be used to 

demonstrate its physical feasibility. The main law: “Plasma contour iso flux”, is true 

whatever is the plasma current profile.  

Finally, this project requires the development of easy-to-use tools for calculating the 

different magnetic configurations and optimizing the plasma control loop. 

1.2. Definitions and hypotheses 

We will assume up to § 7, inclusive that the machine has neither magnetic core nor 

magnetic divertor. The equations linking the fluxes and currents by mutual inductances 

are calculated in air or vacuum (relative magnetic permeability: µr = 1), therefore linear. 

The different contours carrying or likely to carry a current distribution are: 

• The external poloidal field coils, located around the vacuum chamber (index: b, for 

all the coils on the contour: Cb). 

• The vacuum chamber containing the plasma (index: c of the contour), 
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• The plasma whose external contour bears the index: p (or 1), 

• The windings associated with the magnetic divertor bearing the index: d. 

The modelling of a discrete conductor such as a thick coil, the vacuum chamber or the 

plasma contour will be carried out by a set of coaxial circular conductors of large radius 

R and small radius r, located in the conductor section. 

Finally, all the current distributions will be defined in ampere-turns: 𝐽. This definition 

affects the poloidal field coils and those of the magnetic "divertor", consisting of multi-

turn windings: N, traversed by a current: 𝐼 , such that:  𝐽 = 𝑁 ∗ 𝐼 . It follows that the 

electrical voltages of the coils and the associated power generators will also be defined 

for 1 turn, i.e.: 

𝑣 =
𝑉

𝑁
 

1.3. General remarks 

Finally, almost all the problems treated in this document call upon the classical laws of 

electromagnetism, accessible to all, including the calculations of magnetic fields and 

fluxes. Only some problems call upon linear optimization methods with constraints whose 

explanations and methods are, I think, simple and understandable. 

Furthermore, all the calculations listed in this document were carried out with "Microsoft 

Excel", accessible to all. My wish is to make accessible and exploit the laws that have 

remained "mysterious" for too long regarding the movements of plasma in a Tokamak 

and from this to deduce simple methods for controlling the plasma displacements and the 

plasma current. 

All the steps of this project require, for the reader, simple and understandable 

demonstrations, even if some have already been published in the past in one or more 

scientific journals. This document therefore has the advantage of bringing together all the 

knowledge and know-how necessary to resolve the problems associated with controlling 

plasma in a Tokamak based solely on magnetic measurements. 

2. Foreplay 

Before addressing the real problems of plasma control, it seems necessary to introduce 

the notion of virtual hull or shell and its properties which will help us to understand and 

translate the electromagnetic phenomena encountered in a Tokamak. 

2.1. Definition of the virtual shell 

The virtual shell is defined as a mechanically robust, flexible, and freely deformable 

closed contour: Cv, with an ultra-thin shell thickness. Finally, the shell is 

superconducting, its main property; that is to say that its electrical resistance is zero, 

therefore generating no loss by joule effect.   

2.2. General properties of the virtual hull or shell 

2.2.1. Virtual shell electromagnetic equation 

Consider a virtual shell placed on a closed contour Cv. Let: ∅𝑣, the distribution of the 

magnetic flux on the contour Cv and 𝐽𝑣, the distribution of current located on the shell 

merged on the contour Cv. 

The behaviour of the virtual shell is translated by the equation: 
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∅𝑣 = 0, 

on all points of the contour Cv, where: ∅𝑣 is the flux of the virtual shell. In other words, 

if: 𝑑∅𝑣𝑒𝑥𝑡, represents the external flux variation generated on the contour Cv, including 

the deformations of the contour or its relative displacements with respect to the other 

conductors, then the shell reacts by a current variation: 𝑑𝐽𝑣, induced such that: 

𝑑∅𝑣𝑒𝑥𝑡 + 𝑀𝑉𝑉 ∗ 𝑑𝐽𝑣 = 0, 

With: 𝑀𝑉𝑉, the matrix of mutual inductances between conductors modelling the shell. 

2.2.2. Moving and deforming the virtual hull in a magnetic field 

Any external flux variations applied to the contour of the virtual shell, due to 

displacements, deformations of the shell, as well as relative displacements of the shell in 

relation to the external conductors, result in: 

𝑑∅𝑣𝑒𝑥𝑡 = 𝑑𝑀𝑉𝑉 ∗ 𝐽𝑣, 

which instantly changes the current distribution 𝑑𝐽𝑣 such that: 

𝑀𝑉𝑉 ∗ 𝑑𝐽𝑣 + 𝑑∅𝑣𝑒𝑥𝑡 = 0 → 𝑀𝑉𝑉 ∗ 𝑑𝐽𝑣 + 𝑑𝑀𝑉𝑉 ∗ 𝐽𝑣=0, 

where: 𝑀𝑉𝑉 is the matrix of mutual inductances between conductors modeling the shell. 

2.2.3. Electromagnetic energy of a virtual shell and consequences 

The electromagnetic energy of the virtual shell is always identically zero, because 

whatever the induced current distribution: 𝐽𝑣, the flux on the contour Cv is identically 

zero: ∅𝑣 = 0. 

This means that the shell cannot modify the existing magnetic configurations, internal 

and external, in which it is placed. 

In other words, the displacement or deformation of the virtual shell in a magnetic field 

does not generate any induced current in the conductors external or internal to the shell. 

2.2.4. Partitioning of internal and external magnetic configurations 

The virtual shell establishes an electromagnetic partition between the interior and exterior 

spaces at Cv where the internal and external magnetic configurations evolve 

independently, therefore without mutual interference. 

Consider a set of conductors located inside and outside the virtual shell Cv then, any 

variation of the flux on Cv: 𝑑∅𝑣𝑒𝑥𝑡 , due to the external magnetic configuration, 

immediately leads to the appearance of an induced current: 𝑑𝐽𝑣, on the surface of the 

shell which opposes the penetration of the flux inside Cv. The conductors inside the shell 

therefore do not "see" any variation of flux on Cv, because: ∅𝑣 = 0 ; therefore, the 

internal magnetic configuration is not altered by the electromagnetic variations external 

to Cv. 

Similarly, any modification of the internal magnetic configuration does not alter the 

external magnetic configuration. 

2.2.5. Placing a virtual shell on a closed contour 

The value of the initial current distribution: 𝐽𝑣𝑜 , induced on the virtual shell, when placed 

on a fixed contour Cv, depends only on the flux distribution: ∅𝑣𝑒𝑥𝑡, on the contour Cv, 

existing before the placement of the shell, according to the equation: 
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𝑀𝑉𝑉 ∗ 𝐽𝑣𝑜 + ∅𝑣𝑒𝑥𝑡 = 0. 

 

2.2.6. Virtual shell and reality 

The equation: ∅𝑣 = 0, with a virtual shell, means that any variation of the flux applied to 

the virtual shell due to the changes of the external and/or internal magnetic configurations 

results in an induced current distribution on the shell. 

In reality, therefore without a virtual shell, the equation: ∅𝑣 = 0, simply translates that 

the Cv contour is a zero-iso flux contour. 

3. Principles of the virtual hull applied to a Tokamak 

3.1. Definition and properties of magnetizing current distribution 

3.1.1. External magnetizing current distribution 

Consider a space located in vacuum or air where the magnetic flux: ∅𝑜 , is constant 

throughout the space and a closed contour Cv located in this space. Let us imagine that 

we place a virtual shell on this contour Cv, then a current distribution: 𝐽𝑣, is instantly 

induced on the shell, according to the law: ∅𝑣 = 0, opposing the passage of the constant 

flux inside the virtual shell where the fields and fluxes are identically zero, according to 

Figure 2. 

 

Figure 2: Virtual shell inserted in a constant flux space 

In reality, as there is no virtual shell, the current distribution: 𝐽𝑣, simply cancels the fluxes 

on Cv, thus maintaining the contour Cv zero-iso flux. This particular distribution: 𝐽𝑣, 

generates, alone on the contour Cv, a constant flux: −∅𝑜, opposite to the external flux. 

The internal magnetic configuration at Cv being identically zero, there therefore only 

remains the external tangent field: 𝐻𝑡𝑒𝑥𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , at the contour Cv. The evaluation of: 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗ ), 

on the contour Cv, expresses the relation linking the external tangent field to the local 

linear current density of 𝐽𝑣 on Cv: 

𝐻𝑡𝑒𝑥𝑡 = 𝜌𝑚, 

with: 𝜌𝑚 = linear current density of the magnetizing current distribution 𝐽𝑣 on Cv. 

This particular current distribution, called: the "external magnetizing distribution" at the 

Cv contour, generates a constant flux on the Cv contour and a distribution of null 

magnetic field, inside Cv. It follows that any contour located inside an iso flux contour is 
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also iso flux. For this reason, the external magnetizing current distribution will always be 

evaluated on the same contour as that of the flux evaluation, i.e.: 

Equation 1: External magnetizing current distribution on the closed contour : Cv 

𝑀𝑉𝑉 ∗ 𝐽𝑣𝑚 = ∅𝑣𝑚; Cv iso flux and 𝐻⃗⃗ = 0⃗ , inside Cv. 

3.1.2. Internal magnetizing current distribution 

The internal magnetizing current distribution at the contour Cv is defined by the current 

distribution: 𝐽𝑖𝑚, located on a contour: Ci, inside Cv, which maintains the contour Cv iso 

flux. 

Equation 2: Internal magnetizing current distribution on the closed contour Cv 

𝑀𝑉𝐼 ∗ 𝐽𝑖𝑚 = ∅𝑣𝑚, iso flux on the contour Cv and Ci interior to Cv. 

3.2. Interior Cv contour to an exterior current distribution 

Consider a closed contour: Ce, carrying an external current distribution: 𝐽𝑒𝑥𝑡, and a closed 

contour: Cv, located inside Ce, according to Figure 3. The distribution: 𝐽𝑒𝑥𝑡, creates on 

the internal contour Cv, an initial distribution of tangential fields: 𝐻𝑡𝑜⃗⃗ ⃗⃗ ⃗⃗  ⃗, on Cv. 

Now imagine that we place a virtual shell on the internal contour Cv. Then, a current 

distribution: 𝐽𝑣, is instantly induced on the shell according to the law: ∅𝑣 = 0. 

 

Figure 3: Virtual shell surrounded by external conductors  

Since ∅𝑣 = 0 and there is no current distribution inside Cv, we deduce that the fluxes and 

fields are null inside Cv. Thus, the internal fields tangential and normal to the contour Cv 

are zero: 

𝐻𝑡𝑖𝑛𝑡=0 and 𝐻𝑛𝑖𝑛𝑡=0 

It follows that the external normal field being equal to the internal normal field is also 

zero (continuity of the normal field): 

𝐻𝑛𝑒𝑥𝑡 =0 
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Only the non-zero external tangential field remains: 𝐻𝑡𝑒𝑥𝑡, created by the distribution: 𝐽𝑣, 

which has a magnetizing component. The evaluation of: 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗ ), on the contour Cv is 

translated, after decomposition of the distribution: 𝐽𝑣, according to the external 

magnetizing component and the component with zero-ampere-turns, by: 

Equation 3: Relationship between the external tangent field at Cv and the current density 

of 𝐽𝑣 

𝐻𝑡𝑒𝑥𝑡 = 𝐻𝑒 + 𝐻𝑚 = 𝜌𝑒 + 𝜌𝑚 →  𝐻𝑒 = 𝜌𝑒 and 𝐻𝑚 = 𝜌𝑚 

• 𝜌𝑒 = linear density of the zero-ampere-turns component of 𝐽𝑣, 

• 𝜌𝑚 = linear density of the magnetizing component of 𝐽𝑣, generating a uniform flux 

on Cv and a zero-field inside Cv. 

• 𝐻𝑒 and  𝐻𝑚, are the components of the external field specific to current densities: 𝜌𝑒 

and 𝜌𝑚. 

In reality, since there is no virtual shell, the current distribution: 𝐽𝑣, cancels the fluxes on 

Cv and the fluxes and fields inside Cv, thus maintaining the contour Cv at zero iso flux, 

in the presence of the external current distribution: 𝐽𝑒𝑥𝑡 . As a corollary, the current 

distribution: −𝐽𝑣, alone on the contour Cv, generates the magnetic configuration initially 

created by the distribution: 𝐽𝑒𝑥𝑡, inside Cv. 

The magnetizing component of: −𝐽𝑣, alone on Cv, and of linear density: −𝜌𝑚, generates 

a uniform flux and a zero-field inside Cv. 

The zero-ampere-turns component of the distribution: −𝐽𝑣, alone on Cv and of linear 

density: −𝜌𝑒 , generates the magnetic field inside Cv. 

The distribution: −𝐽𝑣, being an external distribution with respect to the internal magnetic 

configuration of Cv, the tangent fields at Cv are therefore the interior tangent fields inside 

Cv, whose component, on Cv, is necessarily equal to the initial field: 𝐻𝑡𝑜⃗⃗ ⃗⃗ ⃗⃗  ⃗. By calculating 

the rotational of the magnetic field on Cv, we obtain the relationship between the initial 

tangent fields and the linear current density: 𝜌𝑒, of the null ampere-turns distribution of 

𝐽𝑣:  

Equation 4: Relationship between the initial tangent field at Cv and the current density 

𝜌𝑒 of 𝐽𝑣 

𝜌𝑒 = 𝐻𝑡0 = 𝐻𝑒 

3.3. Cv contour encircling an interior current distribution 

Consider an inner closed contour: Cp, carrying a current distribution: 𝐽𝑝, and a closed 

contour: Cv, located outside Cp, according to Figure 4. The inner current distribution: 𝐽𝑝, 

creates on the outer contour Cv, an initial distribution of tangential fields: 𝐻𝑡𝑜⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

Now imagine that we place a virtual shell on the outer contour Cv. Then, an initial current 

distribution: 𝐽𝑣, is induced instantaneously on the shell according to the law: ∅𝑣 = 0. 

This current distribution: 𝐽𝑣, cancels the fluxes on Cv and the fluxes and fields outside 

Cv. Since there is no current distribution outside Cv, we deduce that the external fields 

tangential and normal to the contour Cv are zero: 

𝐻𝑡𝑒𝑥𝑡= 0 and 𝐻𝑛𝑒𝑥𝑡= 0 
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It follows that the internal normal field being equal to the external normal field is also 

zero (continuity of the normal field): 

𝐻𝑛𝑖𝑛𝑡 =0 

Only the non-zero internal tangential field remains: 𝐻𝑡𝑖𝑛𝑡. The evaluation of: 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗ ), on 

the contour Cv results in: 

Equation 5:  Relationship between the internal tangent field at Cv and the current density 

of 𝐽𝑣 

𝐻𝑡𝑖𝑛𝑡 = −𝜌𝑣, 

with: 𝜌𝑣= linear current density of  𝐽𝑣 on Cv 

 

 

Figure 4: Virtual shell surrounding inner conductors  

In reality, since there is no virtual shell, the current distribution: 𝐽𝑣, cancels the fluxes on 

Cv and maintains the contour Cv at zero-iso flux. In addition, the fluxes and the fields 

outside Cv, whose initial external tangent fields, are cancelled by the distribution: 𝐽𝑣. 

In conclusion, as the current distribution: 𝐽𝑣, cancels the flux on Cv and the fields and 

fluxes outside Cv, the opposite distribution: −𝐽𝑣, alone on Cv, generates the magnetic 

configuration outside to Cv, initially created by the internal distribution: 𝐽𝑝 , whose 

distribution of the initial external tangent fields: 𝐻𝑡0, on Cv. We deduce by calculating: 

𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗ ), on Cv that: 

Equation 6: Relationship between the initial field 𝐻𝑡0 and the distribution 𝐽𝑣 

𝐻𝑡0 = −𝜌𝑣, i.e. from Equation 5: 𝐻𝑡0 = 𝐻𝑡𝑖𝑛𝑡, 

with: 𝜌𝑣= linear current density of  𝐽𝑣 on Cv 

The induced current distribution: 𝐽𝑣, is, also, an external current distribution induced by 

the internal distribution: 𝐽𝑝, on the contour Cv, with respect to the magnetic configuration 
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inside Cv, but what happens inside the contour Cv? We will investigate this very 

particular case in the following section. 

3.4. Generation of the magnetic configuration inside the Cv contour 

We saw in the previous section (Figure 4) that the internal distribution: 𝐽𝑝, induces a 

current distribution on the external contour Cv. Let us look in detail at what happens 

inside Cv, contour on which we have placed a virtual shell. The current distribution: 𝐽𝑣, 

induced on Cv, satisfies the equation: 

Equation 7: Relationship between Jv and Jp 

∅𝑣 = 0  →  𝑀𝑉𝑉 ∗ 𝐽𝑣 + 𝑀𝑉𝑃 ∗ 𝐽𝑝 = 0 

The current distribution 𝐽𝑣 is an external current distribution, located on the contour Cv. 

According to § 3.2, it generates, alone on Cv, the internal magnetic configuration, initially 

created by all the conductors outside Cv. Equation 7 shows that the internal distribution: 

𝐽𝑝, generates, on the external contour Cv, the induced external distribution: 𝐽𝑣. We have 

shown in § 3.3, that this distribution cancels the fields and fluxes, created by the 

distribution: 𝐽𝑝, on the contour Cv and outside Cv and that the only non-zero resulting 

tangent fields are the tangent fields inside Cv.  

In reality, there is no virtual shell, so Equation 7 simply translates that the distribution: 

𝐽𝑝, internal, cancels the fluxes generated by the distribution: 𝐽𝑣, on the contour Cv, thus 

maintaining the contour Cv zero-iso flux, in the presence of 𝐽𝑣 . The distribution: 𝐽𝑝, 
canceling the fluxes on Cv, the opposite distribution: −𝐽𝑝, therefore satisfies the internal 

fluxes and inside fields on the contour Cv. Thus, the distribution: −𝐽𝑝, is the internal 

current distribution, the sought-after solution, which generates the magnetic configuration 

created by the external distribution: 𝐽𝑣, inside Cv. Indeed, we first placed the internal 

distribution: 𝐽𝑝, which “generates” on Cv the external distribution: 𝐽𝑣, then we add the 

internal solution: −𝐽𝑝, which satisfies the internal fluxes and fields on the contour Cv. 

There is therefore no longer any internal current distribution on the contour Cp and the 

internal magnetic configuration inside Cv is entirely generated by the sole distribution: 

𝐽𝑣, “induced” on Cv by the distribution: 𝐽𝑝. 

As by definition the internal distribution generates the fields and fluxes inside Cv, the 

same rule applies to the sole internal distribution: 𝐽𝑖𝑛𝑡 , located on Cp. Indeed, the 

distribution: 𝐽𝑝, which cancels the fluxes on Cv is equal to: 𝐽𝑝 = −𝐽𝑖𝑛𝑡; the distribution 

that satisfies the fluxes and fields on Cv is opposite: −𝐽𝑝. Thus, there remains only the 

initial distribution 𝐽𝑖𝑛𝑡, on Cp, which generates the fluxes and fields located between the 

contours Cp and Cv. 

We can conclude that the previous rule applies as well to an external distribution as to an 

internal distribution and that the only internal current distribution, located on the contour 

Cp, generates the fluxes and fields internal to Cv, therefore the magnetic configuration 

located between the contours Cp and Cv. 

Finally, all the magnetic measurements intended for the evaluation of the internal 𝐽𝑝 

solution must be located on a single physical contour merged with the contour Cv, where 

the external current distribution is “induced”. 

4. Plasma displacement analysis 

4.1. Displacements of a rigid conductor in a magnetic field 
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The plasma displacement law is not the one we know when we move a rigid conductor 

(index D) carrying a constant current (Id) in an external magnetic field created by a set of 

external coils (index B). Indeed, in this case, the forced displacement of the conductor D 

generates a variation in the mutual inductance 𝑀𝐵𝐷 between the conductor D and the 

contour of the coils B, which in turn generates induced currents in the electrically closed 

coils according to Faraday's law: 

𝑒 = −𝑑∅ 𝑑𝑡,⁄  with: 𝑑∅ 𝑑𝑡⁄ = 𝐼𝑑 ∗ 𝑑𝑀𝐵𝐷 𝑑𝑡⁄  (variation of the mutual with the 

displacement) 

As the circuit of the coils is closed then the induced current: 𝐽𝐵, in the outer coils are 

expressed by:  

Equation 8: Current distribution induced by variation of mutual inductances 

𝑀𝐵𝐵 ∗
𝑑𝐽𝐵

𝑑𝑡
+ 𝐼𝑑 ∗

𝑑𝑀𝐵𝐷

𝑑𝑡
= 0 

The plasma is not a rigid conductor: it deforms and adapts to the external magnetic field 

without generating induced currents outside and inside its contour as it will be explained 

in the following section. 

4.2. Virtual shell principle applied to plasma displacements 

The principle of the virtual shell and its properties, described in § 2.2, constitute the key 

that will allow us to understand and establish a representative model of plasma 

movements. The virtual shell is superconducting, deformable at will and very thin. 

As a reminder, the movements and deformations of a virtual shell in the presence of the 

external and internal magnetic configurations induce a distribution of currents in the 

thickness of the shell that does not modify the internal and external magnetic 

configurations (§2.2.3). In other words, during the movements of the shell, the external 

and internal magnetic configurations remain unchanged. There can therefore be no 

currents induced by the movements of the shell in the external coils or in the plasma 

section. 

We will now consider the following steps with the notations of Figure 5. Let us first 

consider a plasma at equilibrium on the contour C1, then this contour is iso flux by 

definition. Let us imagine that a disturbance of the external or internal field of the plasma 

modifies the equilibrium of the plasma on C1 then, as the mechanical inertia of the plasma 

is zero (negligible mass) the latter moves instantly on another contour C2 in order to adapt 

to the existing external magnetic field and maintain its equilibrium on the new contour 

C2. The contour C1 is therefore no longer iso flux and flux deviations: 𝜟∅, appear on the 

periphery of the contour C1. 

Now let us imagine that a virtual shell is placed on the contour C2 and then that this 

contour C2 is moved back to the contour C1. Then, a variation of the induced current 

distribution: 𝐽𝑃𝑑 , appears on the virtual shell during the movement from C2 to C1. It 

should be noted that the flux deviations: 𝜟∅, on the contour C1, remained unchanged 

during the movement from C2 to C1 because the external (and internal) magnetic 

configuration remained unchanged (property of the virtual shell). The variation of the 

induced distribution: 𝐽𝑃𝑑, only reflects the electromagnetic disturbance that gave rise to 

the plasma movements from C1 to C2, as we will see in the next step. 
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Figure 5 

The plasma is now positioned on the C1 contour but with an induced variation of the: 

𝐽𝑃𝑑, distribution, present on the virtual shell. In order to be able to remove the virtual 

shell, it is first necessary to cancel the variation of the: 𝐽𝑃𝑑, distribution on the virtual 

shell using the poloidal field coils according to the equation: 

Equation 9:   Cancellation of distribution: 𝐽𝑃𝑑, by poloidal field coils on the contour C1 

𝑀𝑃𝐵 ∗ 𝐽𝐵 + 𝑀𝑃𝑃 ∗ 𝐽𝑃𝑑 = 0, 

𝑀𝑃𝑃  and 𝑀𝑃𝐵  are the matrices of the mutual inductances on C1 and between the 

contours C1 and Cp. 

Indeed, it is a question of inducing a current distribution on the shell which cancels the 

distribution: 𝐽𝑃𝑑 . Thus, after the cancellation of the distribution: 𝐽𝑃𝑑 , the shell can be 

removed and the plasma is again at equilibrium on the contour C1. The flux differences 

on C1 have disappeared with the distribution: 𝐽𝑃𝑑, which clearly shows that the variation 

of the current distribution: 𝐽𝑃𝑑, “generates” the flux differences on the contour C1. 

The current distribution: 𝐽𝑃𝑑 , is decomposed according to a so-called magnetizing 

distribution:  𝐽𝑃𝑚 , and a distribution:  𝐽𝑃𝑒 , at zero-ampere-turns. The magnetizing 

distribution is defined on the C1 contour of the plasma as generating a uniform flux on 

the C1 contour (iso flux): 

𝑀𝑃𝑃 ∗  𝐽𝑃𝑚 =  ∅𝑃𝑚 iso flux,with: ∑  𝐽𝑃𝑚 = ∑ 𝐽𝑃𝑑 

The distribution:  𝐽𝑃𝑒 , is therefore a distribution with zero-ampere-turns: 

 𝐽𝑃𝑒 =  𝐽𝑃𝑑 −  𝐽𝑃𝑚 

The distribution:  𝐽𝑃𝑚, reflects a change in the plasma flux but does not generate any flux 

deviation on C1 by definition of the magnetizing distribution. On the other hand, the 

distribution:  𝐽𝑃𝑒 , at zero-ampere-turns, represents the equivalent electromagnetic 

disturbance that gave rise to the plasma displacements. This distribution generates the 

flux deviations: 𝜟∅, on the contour C1. 

Vol. 1 No. 1 (2025):37-101 47 



 

 

 

 

4.3. Modelling plasma displacements without virtual shell 

The plasma displacements can therefore be modelled by a virtual current distribution: 

 𝐽𝑃𝑒 , at zero-ampere-turns, located on the fixed contour: C1, which satisfies the flux 

deviations on this contour. This distribution represents the external equivalent 

electromagnetic disturbance which generated the plasma displacements, from the contour 

C1 to another contour C2. For example, when the poloidal field coils generate a flux 

disturbance: 𝜟∅, on the contour C1, the plasma moves instantaneously, revealing a virtual 

current distribution:  𝐽𝑃𝑒, on C1, which satisfies these same flux deviations on C1. We 

showed in § 3.4. that the internal distribution 𝐽𝑝 on the contour Cp, interior at C1, alone, 

generates the magnetic configuration inside the contour of the magnetic measurements. 

Thus, the expression of the flux deviations on C1: 𝜟∅, is expressed in two ways: either 

with the external distribution:  𝐽𝑒𝑥𝑡, at zero-ampere-turns, or with the internal distribution: 

 𝐽𝑃𝑒, equivalent, with:  𝐽𝑒𝑥𝑡 =  𝐽𝑃𝑒 , on the contour C1. 

Thus, recovering plasma equilibrium on C1 requires cancelling the flux deviations 

generated by this current distribution: 𝐽𝑒𝑥𝑡 or 𝐽𝑃𝑒, on C1 using the poloidal field coils still 

according to Equation 9, but with the distribution: 𝐽𝑃𝑒, instead of 𝐽𝑃𝑑. As in reality, there 

is no virtual shell, this equation necessarily translates a cancellation of the flux deviations 

on the C1 contour, by the external coils as if the plasma did not exist. 

During the movements of the plasma, an external observer only perceives the flux 

deviations appearing on the external contour C1, generated by an electromagnetic 

disturbance internal or external to the plasma. The equilibrium of the plasma therefore 

requires a permanent control of the flux on the C1 contour as if the plasma did not exist 

as a conductor. The plasma will therefore be ignored as an active conductor in the 

electromagnetic equations of the machine for the determination of the control loop of the 

plasma movements at constant plasma current: Ip. 

5. Calculating the interior current distribution Jp satisfying the magnetic 

measurements 

The following evaluation remains valid for a machine with or without a magnetic core 

because the plasma and the vacuum chamber are located in air or vacuum (relative 

magnetic permeability: µr =1). 

5.1. Problem position 

We have shown in § 3.4, that the only interior distribution 𝐽𝑝 located on the contour Cp, 

interior to the measurement contour Cm, generates the magnetic configuration in the 

space located between the contour Cp and the contour Cm. 

We are therefore looking for the interior current distribution: 𝐽𝑝, on the contour Cp, 

located inside the plasma contour C1, which satisfies the field and flux measurements on 

the contour Cm, according to Figure 6. 

As the number of real field and flux measurements is limited: Nf flux measurements and 

Nh field measurements, we will determine the internal current distribution 𝐽𝑝, which best 

satisfies a larger number of measurements: Nc, such that: Nc >> Nf and Nc >>Nh but 

which exactly satisfies the flux and field measurements on the real measurement points. 

In fact, knowing the fluxes is enough to determine the internal distribution 𝐽𝑝. The fields 

are therefore redundant measurements. The general problem then boils down to the 

compromise solution simultaneously minimizing the flux errors and the field errors at the 
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level of the measurement contour for a common current distribution 𝐽𝑝 located on a 

contour interior to the plasma contour C1. 

 

 

Figure 6: Contour arrangement with the Cp contour located inside all the plasma 

contours 

Let 𝑄𝐹 be the quadratic function to be minimized for the fluxes and 𝑄𝐻 the one for the 

fields. Simultaneously minimizing the two functions amounts to minimizing the function: 

𝑄 = 𝛾 ∗ 𝑄𝐹 + 𝛼 ∗ 𝑄𝐻, with α and γ: any positive real numbers. 

In this form it is possible to easily calculate the solution exclusively with the fields (γ=0) 

or exclusively with the flux (α =0) and of course, the mixed solution with the field and 

flux measurements. 

5.2. Reminder on optimization under equality constraint 

Let: 𝐹(𝑥1,𝑥2, … . , 𝑥𝑛,) , a function of N variables to be optimized under the equality 

constraint defined by: 𝑓(𝑥1,𝑥2, … . , 𝑥𝑛,)=0. 

Ignoring the constraint initially, the conditions necessary at first order, for the 

optimization of the function 𝐹, are expressed by: 𝑑𝐹 = 0, i.e. N simultaneous conditions: 

𝜕𝐹

𝜕𝑥1
= 0,

𝜕𝐹

𝜕𝑥2
= 0,…  …

𝜕𝐹

𝜕𝑥𝑛
= 0,  

To take the constraint into account, the mathematician J.L. Lagrange's trick 

(LAGRANGE, 1788) is to differentiate the function: 𝐹 + ƛ𝑓,  where: 𝑓 = 0 , is the 

differentiable constraint, i.e. the true relation whatever the value of ƛ: 

(
𝜕𝐹

𝜕𝑥1
+ ƛ

𝜕𝑓

𝜕𝑥1
) 𝑑𝑥1 + (

𝜕𝐹

𝜕𝑥2
+ ƛ

𝜕𝑓

𝜕𝑥2
) 𝑑𝑥2 + ⋯(

𝜕𝐹

𝜕𝑥𝑛
+ ƛ

𝜕𝑓

𝜕𝑥1
) 𝑑𝑥𝑛 = 0. 

Then he imposes the value of ƛ, such that:   
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𝜕𝐹

𝜕𝑥𝑛
+ ƛ

𝜕𝑓

𝜕𝑥𝑛
= 0. 

From this step, he demonstrates that minimizing the function 𝐹 under the constraint of 

equality: 𝑓 = 0, amounts to minimizing the function: 𝐹 + ƛ𝑓, in a constraint-free system 

with N equations, but with N+1 variables, in adding ƛ to it and where the N+1st equation 

is simply the constraint itself. 

Adding more constraints is resolved in the same way with new values of ƛ from ƛ1 to ƛ𝑘, 

associated with the condition of equality of rank differentials:  𝑁 − 𝑘 + 1. 

5.3. Solving the problem in a free system therefore without constraint 

We will first solve the problem in a free system, therefore without constraints, of Np 

variables: the current distribution∶ 𝐽𝑝, located on the interior contour Cp. 

The quadratic function: 𝑄𝐹, is defined by:  

𝑄𝐹 = ∑ 𝜀𝐹
2𝑁𝑐𝑓

𝑖=1
 and 𝜀𝐹 = 𝑀𝐶𝑃 ∗ 𝐽𝑝 − ∅𝑐, with: 

• NcF = number of flux measurement points including real measurements but also 

fictitious additional measurements, 

• 𝑀𝐶𝑃, the matrix of mutual inductances of the fluxes between the distribution 𝐽𝑝 and 

the points on the measurement contour, 

• ∅c, the distribution of fluxes on the points of the measurement contour. 

Thus, the optimization of 𝑄𝐹 will result in: 𝑑𝑄𝐹 = 0, namely, Np equations which are 

expressed in matrix form by: 

𝑀𝐶𝑃 ∗𝑇 𝜀𝐹 = 0. 

In the same way, the optimization of the function: 𝑄𝐻, will result in the matrix equation: 

𝐻𝐶𝑃 ∗𝑇 𝜀𝐻 = 0, where: 𝐻𝐶𝑃 is the matrix expressing the tangent fields as a function of 

the current distribution 𝐽𝑝  on NcH field measurement points greater than the actual 

number of real measurements. 

Finally, the overall problem boils down to the equation: 

𝛾 ∗ 𝑀𝐶𝑃 ∗𝑇 𝜀𝐹+ 𝛼 ∗ 𝐻𝐶𝑃 ∗𝑇 𝜀𝐻 = 0. 

By replacing 𝜀𝐹 and 𝜀𝐻, by their original expressions, we obtain: 

𝛾 ∗ 𝑀𝐶𝑃 ∗𝑇 [𝑀𝐶𝑃 ∗ 𝐽𝑝 − ∅𝑐] +  𝛼 ∗ 𝐻𝐶𝑃 ∗𝑇 [𝐻𝐶𝑃 ∗ 𝐽𝑝 − 𝐻𝑐] = 0, which is written: 

[𝛾 ∗ 𝑀𝐶𝑃 ∗𝑇 𝑀𝐶𝑃 + 𝛼 ∗ 𝐻𝐶𝑃 ∗𝑇 𝐻𝐶𝑃] ∗ 𝐽𝑝 = 𝛾 ∗ 𝑀𝐶𝑃 ∗𝑇 ∅𝑐 + 𝛼 ∗ 𝐻𝐶𝑃 ∗𝑇 𝐻𝑐 

By introducing a current smoothing function of 𝐽𝑝  which minimizes the sum of the 

squares of the currents 𝐽𝑝(𝑖) we obtain the final matrix to be inverted 𝑄𝑃𝑃: 

𝑄𝑃𝑃 = [𝛾 ∗ 𝑀𝐶𝑃 ∗𝑇 𝑀𝐶𝑃 + 𝛼 ∗ 𝐻𝐶𝑃 ∗𝑇 𝐻𝐶𝑃 + 𝛽 ∗ 𝐼𝑝𝑝], 

where: 𝐼𝑝𝑝 is the identity matrix NpxNp and 𝛽, a positive number as small as possible. 

Finally, the current distribution: 𝐽𝑝, a solution which best satisfies the fluxes and the 

tangential fields on the measurement contour Cm, is expressed by: 
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Equation 10:  Expression of Jp versus the magnetic measurements  

𝐽𝑝 = 𝛾 ∗ 𝑄𝑃𝑃−1 ∗ 𝑀𝐶𝑃 ∗𝑇 ∅𝑐 + 𝛼 ∗ 𝑄𝑃𝑃−1 ∗ 𝐻𝐶𝑃 ∗𝑇 𝐻𝑐, written: 

 

𝐽𝑝 = 𝐹𝑃𝐶 ∗ ∅𝑐 + 𝐵𝑃𝐶 ∗ 𝐻𝑐 

 

with: 𝐹𝑃𝐶 = 𝛾 ∗ 𝑄𝑃𝑃−1 ∗ 𝑀𝐶𝑃𝑇  and 𝐵𝑃𝐶 = 𝛼 ∗ 𝑄𝑃𝑃−1 ∗ 𝐻𝐶𝑃𝑇  

The 𝐽𝑝 solution does exist but it is expressed according to real measurements and also 

fictitious measurements. In order to determine the solution 𝐽𝑝, expressed solely as a 

function of the real measurements, it is necessary to add constraints to the previous free 

system by forcing the solution 𝐽𝑝 to exactly satisfy the fluxes and fields at the level of the 

real measurements, i.e.: Nf + Nh constraints. 

5.4. Solving the final problem with multiple constraints 

In order to solve this problem as simply as possible we will use the Lagrange multiplier 

method which amounts to solving the problem in a system free of constraints but this time 

with: Np+Nh+Nf variables where the Nh+Nf additional variables are the values ƛ(i) of 

the Lagrange multiplier associated with each constraint. The Nh + Nf  linear constraints 

represent the additional equations to solve the global free system. 

In the present case, the constraints are already implicitly integrated into the equations of 

the previous free system in the form of the measurement error: 𝜀𝐹 or 𝜀𝐻, associated with 

the real measurements. So, rather than introducing the constraints in linear form: 𝜀𝐹=0 

and 𝜀𝐻 = 0 , for each real measurement, we will define the differentiable functions 

associated with the constraint by their quadratic forms: 𝜀𝐹
2 =0 and 𝜀𝐻

2  =0. In this way, we 

can simply show (§7.2.2) that the values of ƛ, Lagrange multiplier, are carried over to 

infinity for all constraints, which does not require solving the additional Nh+Nf equations 

which are implicitly solved for very large values of ƛ. 

To solve this system with Nh+Nf constraints, it suffices to modify the matrices: 𝑀𝐶𝑃𝑇  

and 𝐻𝐶𝑃𝑇 , by the following respective matrices: 𝑀0𝐶𝑃𝑇  and 𝐻0𝐶𝑃𝑇 , where all 

columns whose index corresponds to a real measurement are multiplied by: 1+ ƛ, in each 

of the two matrices. 

The solution is always defined by Equation 10, where, the matrices: 𝑀𝐶𝑃𝑇  and 𝐻𝐶𝑃𝑇 , 

are replaced by the respective matrices: 𝑀0𝐶𝑃𝑇  and 𝐻0𝐶𝑃𝑇 , with ƛ very large. At this 

stage, we still have the fictitious measurements on the contour Cc, but their contribution 

to the distribution 𝐽𝑝 solution is now zero, for ƛ very large in the case of the system with 

constraints. We can now restrict the 𝐹𝑃𝐶 and 𝐵𝑃𝐶 matrices to only real measurements, 

i.e. Nf flux measurements and Nh field measurements. Let: 𝐹0𝑃𝐶 and 𝐵0𝑃𝐶  be the 

restricted matrices of respective dimensions: NpxNf and NpxNh, where Nf and Nh are 

the numbers of respective real measurements of flux and fields. 

There you have it, we have determined our solution: 𝐽𝑝, which exactly satisfies the real 

flux and field measurements located on the measurement contour Cm. 

5.5. The zero-amperes-turns solution JPe, which generates the flux differences on C1 
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The final solution at zero-ampere-turns which satisfies the flux deviations on the fixed 

contour C1 is expressed by: 

𝐽𝑝𝑒 = 𝐽𝑝 − 𝐽𝑝𝑚 

where: 𝐽𝑝𝑚, is the internal magnetizing distribution on the contour C1, defined by: 

𝑀1𝑃 ∗ 𝐽𝑝𝑚=∅1𝑚, iso flux on C1 and ∑𝐽𝑝 = ∑ 𝐽𝑝𝑚 

In reality we do not need to calculate the current distribution: 𝐽𝑝𝑚, to evaluate the flux 

differences on C1 because the latter are defined by differential fluxes where the common 

flux component does not intervene. We will therefore calculate the fluxes on C1 directly 

with the solution 𝐽𝑝 then the flux differences: 

Equation 11: Expression of flux deviations on C1 using the solution:  Jp 

∅1 = 𝑀1𝑃 ∗ 𝐽𝑝  →  𝜟∅(𝑖) = ∅1(𝑖) − ∅1(1), for i=1 to N1. 

5.6. Plasma current evaluation using the Jp solution 

The internal distribution 𝐽𝑝 that satisfies the magnetic measurements must be used to 

calculate the amplitude of the plasma current in real time by summing the ampere-turns: 

𝐼𝑝 = ∑ 𝐽𝑝(𝑖)𝑁𝑝
1 , for: i=1 to Np. 

The value of Ip, thus calculated, is very accurate, therefore, the approximate calculation 

of the circulation of the tangent field along the measurement contour is no longer 

necessary. 

5.7. Numerical evaluation of the Jp solution 

In order to corroborate the previous calculations with reality, the numerical application 

was carried out with data from the TORE SUPRA (WEST version) machine, located in 

Cadarache (France), including: 

• The spatial coordinates of tangent field and flux measurements, practically located 

on the same contour. 

• A total number: Nf=6, of flux measurements distributed over the contour, 

• A total number: Nh=51, of tangent field measurements distributed over the contour. 

Figure 7 shows the distribution of measurements on the Cm contour and the Cp contour 

carrying the current distribution. 

In order to control the convergence of the solution, we placed a constant current 

distribution on the Cp contour which generates the measurements on the Cm contour. 

Next, the converging program returns a current distribution that must match the input 

value. This test makes it possible to easily adjust the program parameters, mainly the 

current smoothing parameter β and λ, the value of the Lagrange multiplier. 

The results show that mixed measurements make convergence narrow. In this specific 

case, the currents generated respectively by the fields and the fluxes are antagonistic and 

of significant amplitude. In addition, there is the presence of harmonic currents which 

make convergence more delicate but after convergence the precision is correct. 
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Figure 7: Measurement points on Cm and internal contour Cp 

By using only flux measurements (parameter α =0), the convergence is easy but the 

precision is simply lacking because of the reduced number of flux measurements (Nf=6). 

By using only field measurements (parameter γ=0), the convergence is excellent and the 

precision excellent, from 14 to 51 tangent field measurements regularly distributed over 

the contour. 

All the previous solutions return an extremely precise amperes-turns value unlike the 

calculation of the circulation of fields on the measurement contour. 

6. Magnetic measurements 

All calculation results presented in this section were carried out using the general solution: 

𝐽𝑝, developed in § 5. 

6.1. Introduction 

Magnetic field and flux measurements are installed inside the vacuum chamber 

containing the plasma in order to reconstruct the flux distribution on the assumed plasma 

contour C1 as well as to evaluate the amplitude of the plasma current. 

At the origin of Tokamaks in the early 1950s, the evaluation of fluxes on the assumed 

plasma contour was carried out thanks to a limited development of the flux, to the first 

order, using mixed measurements: flux and magnetic fields, positioned on the 

measurement contour. The plasma current was then evaluated by calculating the 

circulation of the tangent field along the measurement contour. Subsequently, this method 

was improved but still remains inaccurate when the plasma boundary moves away from 

the measurement contour. 

Today, we have the possibility of calculating the distribution: 𝐽𝑝, interior, which satisfies 

the fluxes and fields on the measurement contour. We have shown in § 3.4, that the only 

internal solution: 𝐽𝑝, located on the contour Cp, generates the fields and fluxes in the 

space between the contour Cp, interior and the contour of measurements Cm. We will see 

that this method is flexible, extremely precise and allows to calculate the fluxes on the 
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presumed contour of the plasma as well as the amplitude of the plasma current with an 

extraordinary precision. The downside with this method is that the use of mixed 

measurements imposes the constraint of positioning the field and flux measurements, on 

the same and unique physical contour. 

6.2. Constraint of using the internal solution Jp with mixed measurements 

We saw in § 3.4, that the magnetic measurements must be located on the same and unique 

regular physical contour because the solution 𝐽𝑝 depends on the spatial position of the 

measurement contour. The use of measurements of the same type, flux or field, allows to 

overcome this constraint whereas with mixed measurements, the contour of the field 

measurements and that of the flux measurements can be different although close to each 

other. 

In the case where some measurement points are not located on the measurement contour 

without being too far from the contour Cm, it is possible to approximate these 

measurements according to the measurements on Cm, and vice versa, using limited 

developments to the first order. It is then necessary to define a regular contour: Cm, with 

as little curvature as possible which passes through the field measurements. Indeed, it will 

subsequently be a question of expressing, if possible, all the fictitious flux measurements 

located on this contour Cm as a function of the real measurements, located nearby, thanks 

to a development limited to the first order. This requires that each real flux measurement 

close to the contour Cm be located on the normal to the contour Cm passing through a 

real field measurement on Cm. 

6.3. What measurements with the Jp solution for good theoretical precision 

We have seen that the mixed measurements must be located on the same physical contour, 

but in general this is not the case and it is necessary to fit the flux measurements located 

near the contour of the field measurements, using first-order limited expansions. 

Moreover, the 𝐽𝑝  solution calculated with the mixed measurements is not easily 

convergent because the part of the 𝐽𝑝  distribution generated by the fields and that 

generated by the fluxes are opposite and of large amplitude, with on the other hand the 

presence of harmonics of currents superimposed with the solution, leading to a tight 

convergence. Therefore, using single type measurements avoid the problems encountered 

with mixed measurements and provide good results. 

Flux measurements are sufficient to evaluate the interior: 𝐽𝑝 , solution; tangent field 

measurements are therefore redundant measurements. 

It is shown numerically that, at least, twelve measurements (without redundancy) of 

tangent fields or absolute fluxes are sufficient to calculate the Jp solution with very good 

accuracy, for small machines as well as for large machines such as ITER or DEMO. The 

necessary and sufficient conditions for obtaining correct results are: 

• A uniform distribution of field or flux measurements, along the measurement 

contour, whether fictitious or real, 

• A measurement contour that is as regular as possible with the lowest required 

curvature, 

• A sufficient number of fictitious measurements of the same type, in addition to the 

real measurements, on which the exact measurement constraints are applied (see § 

5.4). 
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Finally, the greater the number of real measurements, the better the accuracy is for 

evaluating the Jp solution. In short, a number of field or flux measurements between 12 

and 30 is suitable for good precision of the Jp distribution. In general, the returned 

ampere-turns are returned with a relative precision of less than 10-6. Calculations show 

that the local values: 𝐽𝑝(𝑖), are affected by a lower precision than that obtained on the 

total ampere-turns by the presence of harmonic currents whose amplitude decreases with 

the number of real measurements of the same type. Despite everything, the difference 

between 12 and 30 measurements is not significant. 

However, in the event of a measurement loop failure, the accuracy deteriorates in the first 

inner third of the measurement contour (§ 6.8) and it is necessary, in this case: 

• To increase the minimum number of measurements, not by 1 but by 2 to 4 additional 

measurements, 

• To concentrate more measurements in the first inner third of the measurement 

contour and to maintain, or even partially reduce, the number of measurements 

regularly distributed in the outer 2/3 of the measurement contour. 

6.4. What measurements for the reliability of plasma control 

Concerning the numerical results, with flux measurements or field measurements, the 

precision of the calculations is equivalent for the same number of measurements of the 

same type. The only difference between these two types of measurements lies in the much 

higher signal level for absolute flux measurements than for tangent field measurements. 

In an environment polluted by parasitic and permanent electromagnetic sources, it is clear 

that the priority goes to the use of absolute flux measurements which are, moreover, 

directly usable in the calculations unlike differential flux measurements. The only 

challenge concerning the measurements in general concerns the drift of the integrators 

over long cycle durations with plasma, but which is lower for fluxes than for fields, with 

higher signal levels therefore with lower integral gains than for fields. 

6.5. Numerical confirmation with only flux measurements without redundancy 

We propose to numerically show the efficiency of flux measurements for evaluating the 

interior Jp solution, in the case of a virtual machine, larger than the ITER Tokamak, 

6.6. Virtual machine geometric data 

In this virtual machine, the measurement contour Cm and that of the current distribution 

Cp were modelled by elliptic curves comprising 60 to 70 fictitious and real measurement 

points for the measurement contour Cm and 60 conductors for the contour Cp. 

This virtual machine was obtained from the configuration of the TORE SUPRA machine 

WEST version, thanks to a homothety of a factor: 4 and an eccentricity of a factor of 2 

for the elliptic shapes. The geometric data of the virtual machine are summarized in Table 

1. The following figure 8 shows the contours Cm and Cp in a vertical plane passing 

through the machine axis. All dimensions are given in meters (m). 
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Table 1: Geometric data of the virtual machine 

 

Figure 8: Contour Cm and Cp in the large virtual machine 

6.7. Numerical results 

The calculation of the solution Jp satisfying the flux measurements located on the contour 

Cm was carried out according to the number of real flux measurements, ranging from 6 

measurements to 30 flux measurements, regularly distributed on the contour Cm, thanks 

to the general solution Jp, developed in § 5. 

The convergence test consists of placing an initial distribution at constant current of 

6000A, carried by 60 elementary conductors (100A per conductor) which generates the 

fluxes on the measurement contour Cm and which the converging program must restore. 

Convergence is ensured by the proper choice of the value of the Lagrange multiplier 
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(Lambda) and thanks to the increasing adaptation of the smoothing coefficient of the 

current distribution Jp (Beta). Figure 11 shows the distribution Jp(i) returned by the 

converging program according to two distinct scales in order to assess the relative 

precision on the distribution Jp(i). 

The following Table 2 summarizes the results of the numerical simulations carried out 

according to the number of real flux measurements, from 6 to 30 measurements. 

The parameters « Lambda » and « Beta » are the convergence parameters of the solution 

Jp: 

• « Lambda » is the Lagrange multiplier carried to infinity (10+9), 

• « Beta » is the smoothing parameter of the current distribution Jp. 

This table shows the relative precision obtained on the distribution Jp(i) and that obtained 

on the ampere-turns: Ip. The curves in Figure 9 and Figure 10 respectively describe the 

evolution of the relative precision on the distribution Jp(i) and that of the ampere-turns Ip 

according to the number of flux measurements. 

 

Table 2: Results of the simulations according to the measurement number  

 

Figure 9: Relative accuracy on the distribution Jp as a function of the number of 

measurements 
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Figure 10: Relative accuracy on ampere-turns Ip as a function of the number of 

measurements 

 

Figure 11: Values of Jp returned by program for 15 flux measurements 

6.8. Redundancy: case of one faulty measurement among 15 measurements 

We assume that 15 real flux measurements (60 measurements in total including fictitious 

measurements) are positioned and equally distributed on the contour Cm. We will then 

calculate the solution 𝐽𝑝 and the relative associated errors on Jp(i) and Ip, assuming one 

defective measurement among the 15 existing measurements and investigate the influence 

of the position of the defective measurement on the relative accuracy of the Jp 

distribution. 

Point: 1, is the innermost point (closest to the machine axis); the numbering from 1 to 60 

proceeds clockwise with a regular distribution of the measurements. 

Table 3 summarizes the simulation results. Figure 12 shows the relative precision on Jp(i) 

and Figure 13, that of the plasma current, versus the position of the failed loop. 

The accuracy obtained with 15 valid measurements is 5.0 10-4 on Jp(i) and 7.3 10-8 on Ip. 
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Table 3: Simulation results depending on the position of the faulty loop  

 

Figure 12: Relative precision on Jp(i) versus the position of the failed loop 
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Figure 13: Relative precision on Ip versus the position of the failed loop 

The results show that the accuracy depends on the measurement position. The first third 

of the measurements from point:1, the innermost, is strongly affected by a lower accuracy 

(5 to 10 times lower) while the other outermost points are little or not affected. 

Thus, the tendency would be rather to concentrate more measurements on the first inner 

third than on the rest of the contour rather than a regular distribution as recommended. 

6.9. Conclusion on the numerical results obtained 

The minimum number of measurements, necessary for the evaluation of the solution Jp, 

must be at least equal to 12 regularly distributed measurements, according to Figure 10 

and without redundancy. 

Beyond 12 measurements, there is practically no difference, because the contribution of 

fictitious measurements is almost non-existent in all cases with more than 12 real 

measurements. We saw in § 5.4 that the adaptation of the Lagrange multiplier fixed at a 

sufficiently large value, makes it possible to annihilate the influence of fictitious 

measurements. Thus, the sum of the columns associated with the fictitious measurements 

of the 𝐹𝑃𝐶 matrix expressing the current distribution Jp as a function of the real and 

fictitious measurements, is almost zero for all fictitious measurements; which makes it 

possible to restrict the 𝐹𝑃𝐶 matrix to real measurements only. 

The study of § 6.8 on the influence of a defective measurement among 15 measurements 

would rather show that it is necessary to place more measurements on the first inner third 

of the contour and to maintain or reduce the concentration of measurements on the 

remaining 2/3. 

7. Evaluation of the plasma control loop 

In this section, the plasma boundary is assumed to be a constrained boundary, located on 

the fixed C1 contour. 

7.1. Problem position 

The plasma position control loop aims to maintain a permanent iso-flux distribution on 

the presumed C1 contour of the plasma. As mentioned in § 4.3, the plasma is completely 
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ignored as an active conductor, because it is indeed a flux control on the C1 contour, 

carried out using poloidal field coils; which leads us to determine the solution 𝐽𝑏 which 

best satisfies the fluxes on C1. 

More precisely, we wish to control the fluxes as best as possible on Np points of the C1 

contour, with 𝑁𝑝 ≥ 𝑁𝑏 , or even exactly on one to Nb points of the C1 contour, by 

increasing the number of constraints. It is clear that we can only exactly control up to Nb 

flux points on C1 using the poloidal field coils, but only one constraint is necessary: an 

exact flux at a single point, chosen as the reference point of the fluxes on the C1 contour, 

for example the inner point of the plasma in contact with the inner limiter or other. This 

point is the reference point for calculating the flux deviations. 

The use of a number of constraints lower than Nb offers the possibility of optimizing the 

poloidal coil currents, which is not possible with Nb constraints. In a machine without a 

magnetic circuit, the solution∶ 𝐽𝑏, determines the evolution, therefore the amplitude, of 

the coil currents from the plasma current generation phase until the end of the cycle 

Furthermore, the calculation of the fluxes on a larger number of points on C1 (Np > Nb) 

does not pose a problem thanks to the knowledge of the distribution: 𝐽𝑝, which exactly 

satisfied the magnetic measurements on the contour Cm, exterior to the plasma (§ 5). 

7.2. The main Jb solution satisfying the flux on C1 

The solution: 𝐽𝑏, is objectively the solution which satisfies at best the fluxes on Np points 

(with: 𝑁𝑝 ≥ 𝑁𝑏 ) of the contour C1, i.e. the solution: 𝐽𝑏, first defined by: 

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝐽𝑏. 

In other words, we seek the opposite solution: 𝐽𝑏, which is expressed as a function of the 

Np (or N1) flux values on C1 (or Cp) by: 

𝐽𝑏 = 𝐾𝐵𝑃 ∗ ∅𝑃, 

where 𝐾𝐵𝑃 is the matrix to be determined, with: 𝑁𝑝 ≥ 𝑁𝑏 . 

It results that the matrix product: 𝐾𝐵𝑃 ∗ 𝑀𝑃𝐵, is numerically very close to the identity 

matrix: 𝐼𝑏𝑏 which dimensions are NbxNb. 

Equation 12: property of the KBP matrix 

𝐾𝐵𝑃 ∗ 𝑀𝑃𝐵~𝐼𝑏𝑏, of dimensions: NbxNb, for: 𝑁𝑝 ≥ 𝑁𝑏 

We assume, in this calculation, that the machine does not have a magnetic core; we will 

show in § 8 that the control of plasma movements, carried out with the fluxes of the coils 

rather than the currents, adapts easily and without change to a machine with a magnetic 

core. 

The influence of the vacuum chamber will be ignored in this calculation because the 

chamber is a passive structure. Flux control on C1 is achieved only by the poloidal field 

coils. 

In order to find the 𝐽𝑏 solution with constraints, we will use the Lagrange multiplier 

method to solve the system as already explained in § 5.2. The solution consists of first 

solving the problem without constraints and then adding one up to Nb constraints. 
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7.2.1. Solution Jb without constraint 

The solution for a system free of constraint amounts to optimizing the flux differences: ε, 

on Np points of the plasma contour (Cp), with 𝑁𝑝 ≥ 𝑁𝑏, which results in the function: 

𝑄 = ∑ 𝜀(𝑖)2,𝑁𝑝
𝑖=1  where: 𝜀 = ∅𝑃 − 𝑀𝑃𝐵 ∗ 𝐽𝐵, with: 

• 𝜀 and ∅P are column vectors of dimensions Npx1 and 

• 𝑀𝑃𝐵 is the matrix of mutual inductances of dimension NpxNb, between coils and 

plasma contour. 

Thus, minimizing the function 𝑄 results in the following Nb equations:  

𝑑𝑄 = 0 =>
𝜕𝑄

𝜕𝐽𝐵(𝑗)
= 0, for: j=1 to Nb, with: 

𝜕𝑄

𝜕𝐽𝐵(𝑗)
= ∑ 𝜀(𝑖)𝑖=𝑁𝑝

𝑖=1 ∗ 𝑀𝑃𝐵(𝑖, 𝑗) 

Either in matrix form: 𝑀𝑃𝐵 ∗ 𝜀 = 0                                            𝑇  

Replacing 𝜀, by its original expression leads to: 

𝑀𝑃𝐵 ∗ 𝑇 [∅𝑃 − 𝑀𝑃𝐵 ∗ 𝐽𝐵] = 0 → 𝑀𝑃𝐵 ∗ 𝑇  𝑀𝑃𝐵 ∗ 𝐽𝐵 = 𝑀𝑃𝐵 ∗ 𝑇 ∅𝑃 

After introducing a coil current smoothing function where β is a real number as small as 

possible and 𝐼𝑏𝑏, the identity matrix NbxNb, for cases with less than Nb constraints: 

𝐽𝐵 = [ 𝑀𝑃𝐵 ∗ 𝑀𝑃𝐵 + 𝛽 ∗ 𝐼𝑏𝑏𝑇 ]
−1

∗ 𝑀𝑃𝐵𝑇 ∗ ∅𝑃 

Thus, the matrix 𝐾𝐵𝑃 which expresses 𝐽𝑏 as a function of the fluxes on the contour C1 

is: 

Equation 13: Expression of the KBP matrix 

𝐽𝐵 = 𝐾𝐵𝑃 ∗ ∅𝑃 → 𝐾𝐵𝑃 = [ 𝑀𝑃𝐵 ∗ 𝑀𝑃𝐵 + 𝛽 ∗ 𝐼𝑏𝑏𝑇 ]
−1

∗ 𝑀𝑃𝐵𝑇  

7.2.2. Adding constraints to the Jb solution 

We will then solve the system with one linear constraint: 𝑔 = 0, the necessary one which 

requires an exact flux: ∅𝑃(1), at the reference point on C1, which is expressed by:   

                  𝑔 = 𝜀(1) = ∅𝑃(1) − ∑ 𝑀𝑃𝐵(1, 𝑗)𝑁𝑏
𝑗=1 ∗ 𝐽𝐵(𝑗) = 0. 

The general method based on the Lagrange multiplier results in the optimization in a free 

system of Nb +1 equations, of the global function defined by: 

𝑄 + ƛ𝑔, where 𝑔 = 0, is the differentiable constraint and ƛ, a real number. 

Instead of using the linear constraint we will intentionally define the function g in the 

quadratic form of the error 𝜀(1) as: 

𝑔 =
𝜀(1)2

2
= 0 

which will simplify the calculation of the value of ƛ which, in this case, is carried over to 

infinity as explained below. 

Let us calculate: 
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𝑑(ƛ ∗ 𝑔) = 0 −→ ƛ ∗ 𝜀(1) ∗ 𝑀𝑃𝐵(1, 𝑗) = 0, for j=1 to Nb 

where: ƛ is chosen such as: 

𝜕𝑄

𝜕𝐽𝐵(𝑁𝑏)
+ ƛ ∗

𝜕𝑔

𝜕𝐽𝐵(𝑁𝑏)
= 0 

 either again:  

1

1 + ƛ
∗ ∑𝜀(𝑖) ∗ 𝑀𝑃𝐵(𝑖, 𝑁𝑏)

𝑁𝑝

𝑖=2

= −𝜀(1) ∗ 𝑀𝑃𝐵(1,𝑁𝑏). 

As the error: ε(1), must be zero while the other values of ε(i), are not, it is clear that the 

solution for ƛ is: ƛ = ± ∞ , which ensures: ε(1) =0. 

The 𝐽𝑏 solution including the constraint is always expressed according to Equation 13, 

where the matrix: 𝑀𝑃𝐵𝑇  is replaced by the matrix: 𝑀0𝑃𝐵𝑇 , obtained by multiplying 

column 1 of matrix: 𝑀𝑃𝐵𝑇 , by 1 + ƛ, with ƛ, a large positive real number: 

𝐽𝐵 = 𝐾𝐵𝑃 ∗ ∅𝑃 →  𝐾𝐵𝑃 = [ 𝑀0𝑃𝐵 ∗ 𝑀𝑃𝐵 + 𝛽 ∗ 𝐼𝑏𝑏𝑇 ]
−1

∗ 𝑀0𝑃𝐵𝑇  

In this way, we can easily add up to Nb constraints and compare the solutions. 

7.2.3. Expression of the optimal solution JBe 

The general solution is expressed according to the relation: 𝐽𝐵𝑜𝑝𝑡 = 𝐾𝐵𝑃 ∗ ∅𝑃, with 

𝐾𝐵𝑃 the NbxNp matrix calculated previously. The breakdown of the column vector: ∅𝑃, 

according to the differential fluxes on Np points, relative to the point: i=1, of the contour 

C1 is expressed by: 

∅𝑃(𝑖) = ∆∅𝑃(𝑖) + ∅𝑃(1), for i=1 to Np, where: ∆∅𝑃(1) = 0 

We therefore deduce the “magnetizing” component of current according to the flux: ∅P(1) 

at point 1, and the distribution of currents, associated with the differential fluxes: ∆∅𝑃(𝑖), 

for i=2 at Np: 

𝐽𝐵𝑚(𝑖) = ∅𝑃(1) ∗ ∑ 𝐾𝐵𝑃(𝑖, 𝑗)𝑁𝑝
𝑗=1 , for i = 1 𝑡𝑜 Nb, and: 

𝐽𝐵𝑒(𝑖) = ∑  𝐾𝐵𝑃(𝑖, 𝑗)𝑁𝑝
𝑗=2 ∗  Δ∅𝑃(𝑗), for i=1 to Nb 

As  Δ∅𝑃(1) = 0, by definition, the 𝐽𝐵𝑒 solution is expressed as follows: 

Equation 14: Expression of JBe, used for the plasma displacement control  

𝐽𝐵𝑒 =  𝐾𝐵𝑃̂ ∗  Δ∅𝑃, for i=1 to Nb and j=1 to Np-1, where: 

𝐾𝐵𝑃̂(𝑁𝑏,𝑁𝑝 − 1) , is part of the matrix 𝐾𝐵𝑃  in which the first column has been 

cancelled. 

The 𝐽𝐵𝑒  solution is the 𝐽𝐵  solution which will be used for the plasma displacement 

control loop. 

In the rest of the document, we will continue to use the original 𝐾𝐵𝑃 matrix, of rank Np, 

instead of 𝐾𝐵𝑃̂, despite the lower rank of the matix for practikal reasons including in 

particular the change of the reference point. 
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7.3. Comparison of the solutions in a virtual machine 

In order to calculate and then verify the 𝐽𝑏 solutions we defined a virtual machine and 

arbitrarily chose Nb=11 coils distributed on the exterior contour Cb. The central coil is 

numbered N° 1 and the other coils from: 2 to 11, are defined by turning clockwise from 

the inside:1. The Figure 14 below shows the geometry of the used contours including the 

coil contour Cb, the vacuum chamber Cc and the plasma contour C1 (or Cp). 

To check and compare the solutions, we calculated the magnetizing distribution: 𝐽𝐵𝑚, of 

the poloidal field coils from 1 to 11, for 1 Wb of constant flux, then we calculated the 

distribution of the magnetizing flux generated by this distribution on the contour C1, on 

Np=45 points of the C1 contour including the interior point 1, turning clockwise from the 

central point 1. This distribution of magnetizing current for 1 Wb of plasma flux is 

deduced from the 𝐾𝐵𝑃 matrix (see § 7.2.3) and should generate a flux distribution of 

around 1 Wb on the plasma contour. 

 

Figure 14: Spatial configuration of the poloidal field coils, the vacuum 

chamber and the C1 plasma contour. 

The efficiency of the 𝐾𝐵𝑃 matrix is defined by comparing the calculation of the flux on 

Cp to the iso flux theotretical value of 1 Weber. The values generated by the solution:  

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝐽𝐵𝑚, must be as close as possible to 1 Weber on the Np points of the contour 

Cp or C1. 

We compared two main scenarios: 

• Case Nb=11 and 11 constraints (exact flux on Nb points of contour C1), without 

smoothing the coil currents: Figure 15 and Figure 16. 

• Case Nb=11 but 1 constraint (exact flux on interior point 1): 

- Without smoothing the coil currents: Figure 17 and Figure 18 
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- With smoothing of the coil currents: Figure 19 and Figure 20 

 

Figure 15: Magnetizing distribution according to the number of coils (case 

N=11 constraints) 

 

Figure 16: Distribution of the flux on C1 for the magnetizing distribution (case 

N=11 constraints) 
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Figure 17: Magnetizing distribution according to the number of coils (case N=1 

constraint at point 1) without smoothing the coil currents  

 

 

Figure 18: Distribution of the flux on C1 for the magnetizing distribution (case 

N=1 constraint) without smoothing the coil currents  
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Figure 19: Magnetizing distribution according to the number of coils (case N=1 

constraint at point 1) with additional smoothing of the coil currents  

 

 

Figure 20: Distribution of the flux on C1 for the magnetizing distribution (case 

N=1 constraint) with additional smoothing of the coil currents  

We therefore shown that using less constraints (One minimum constraint) leads to the 

improvement of the errors and the possibility to smooth the coil currents for a machine 

without iron core. In this example, we used 45 calculation points of the flux on C1 with 

the first point as exact flux. The results are better with less constraints compared to the 

case of Nb=11 constraints. 
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7.4. Approach to the solution of the plasma position control loop 

7.4.1. Case of a very resistive vacuum chamber 

Let us first assume that the vacuum chamber is very resistive (very short flux penetration 

time constant in the chamber and a negligible vacuum vessel current distribution) then 

the vacuum chamber can be neglected. The open loop equations, by ignoring the vacuum 

chamber as well as the plasma as an electrical conductor (§ 4.3) are: 

Equation 15: Open loop equations 

On the contour of the poloidal field coils Cb:         ∅𝐵 = 𝑀𝐵𝐵 ∗ 𝐽𝐵, 

On the plasma contour Cp:                              ∅𝑃 = 𝑀𝑃𝐵 ∗ 𝐽𝐵,  

or versus the flux differences:         ∅𝑃(𝑖) = ∅𝑃(1) + 𝛥∅𝑃(𝑖), for i=1 to Np 

As mentioned in § 8, for a machine with a magnetic circuit, we will close the loop on the 

voltage of the generator(s) associated with the coil voltages (Vb), by the following 

expression, for example, with a proportional gain α: 

a) 𝑉𝑏 = −𝛼 ∗ 𝑀𝐵𝐵 ∗ 𝐽𝐵𝑒 , where: 

𝐽𝐵𝑒, is the 𝐽𝑏 solution satisfying: 𝐽𝐵𝑒 = 𝐾𝐵𝑃 ∗ ∆∅𝑃, on Cp (C1) and 𝛼, a real positive 

number. 

Then, the equation of the fluxes of the poloidal field coils is translated after derivation 

by:  

b) 
𝑑∅𝐵

𝑑𝑡
= 𝑉𝑏 = 𝑀𝐵𝐵 ∗

𝑑𝐽𝐵

𝑑𝑡
 

By eliminating 𝑉𝑏 between the two previous relations (a) and (b), we obtain:  

𝑀𝐵𝐵 ∗ [
𝑑𝐽𝐵

𝑑𝑡
+ 𝛼 ∗ 𝐽𝐵𝑒] = 0. 

As 𝑀𝐵𝐵 is an invertible matrix we necessarily deduce: 

𝑑𝐽𝐵

𝑑𝑡
+ 𝛼 ∗ 𝐽𝐵𝑒 = 0   ➔   

𝑑𝐽𝐵

𝑑𝑡
= −𝛼 ∗ 𝐽𝐵𝑒 

Thus, the flux equation on the contour CP is translated, after the elimination of 𝐽𝐵 and 

with the solution 𝐽𝐵𝑒 by:                 

𝑑∅𝑃

𝑑𝑡
+ 𝛼 ∗ 𝑀𝑃𝐵 ∗ 𝐽𝐵𝑒 = 0 

As the 𝐽𝐵𝑒  solution satisfies: 𝑀𝑃𝐵 ∗ 𝐽𝐵𝑒 = ∆∅𝑃 , up to the error on Cp, and after 

replacement of the absolute fluxes on Cp by the differential fluxes and the common flux 

component: ∅P(1), the final closed loop equations become: 

Equation 16: Closed-loop equations in the case of a highly resistive vacuum chamber 

𝑑∆∅𝑃

𝑑𝑡
+ 𝛼 ∗ ∆∅𝑃 = 0 

and 

Vol. 1 No. 1 (2025):37-101 68 



 

 

 

 

 
𝑑∅𝑃(1)

𝑑𝑡
= 0 

 

The fluxes on the C1 contour therefore satisfy an always stable equation where the vector 

∆∅𝑃 tends towards zero with a common time constant: T=1/ α. 

If we had closed the loop with an additional derivative gain: −𝛽 ∗ 𝑀𝐵𝐵 ∗
 𝑑𝐽𝐵𝑒

𝑑𝑡 
, we would 

obtain the final equation which is also always stable: 

(1 + 𝛽) ∗
𝑑∆∅𝑃

𝑑𝑡
+ 𝛼 ∗ ∆∅𝑃 = 0 

With the common time constant: 

𝑇 =
1 + 𝛽

𝛼
 

Thus, with a very resistive vacuum chamber, the control of the fluxes on Cp is always 

ensured and optimized: the differential fluxes on C1 converge towards 0, with the error: 

ε, according to the chosen 𝐽𝑏 solution. 

7.4.2. Influence of the vacuum chamber 

In the case of low or even zero electrical resistance, the vacuum chamber is similar to a 

virtual hull. We showed, in § 2.2.4, that the magnetic configurations internal and external 

to the hull are, in this case, magnetically partitioned. In other words, no control of the 

interior conductors is possible using the exterior conductors and vice versa. 

Between these two extreme situations where the resistance of the chamber goes from 

infinity to zero, there is a significant margin and we will estimate the phenomena 

encountered in the general case. 

The vacuum chamber slows down the penetration of the magnetic field or flux, generated 

by the coils, towards the interior of the chamber where the plasma is located but this 

penetration time constant is not homogeneous along the contour of the chamber. In fact, 

there is not just one time constant but a set of N distinct time constants where N is the 

number of conductors modelling the vacuum chamber. The time constants specific to the 

vacuum chamber: τ, are determined from the time equation of the vacuum chamber: 

𝑀𝐶𝐶 ∗
𝑑𝐽𝐶

𝑑𝑡
+ 𝑅𝐶𝐶 ∗ 𝐽𝐶 = 0 

where: 𝑀𝐶𝐶 is the mutual inductance matrix and 𝑅𝐶𝐶 is the diagonal resistance matrix. 

They are expressed in terms of the N negative real solutions of the Laplace operator: p, 

which satisfy the equation: 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡[𝑀𝐶𝐶 ∗ 𝑝 + 𝑅𝐶𝐶] = 0, with: 𝜏 = −
1

𝑝
. 

This penetration time varies as the inverse of the resistance. It is all the greater as the 

resistance of the vacuum chamber is low. Finally, the greater this field penetration time, 

the longer the electrical voltage on the vacuum chamber must remain applied, going so 

far as to generate a distribution of currents, almost stationary on the chamber, which 

creates an undesirable flux at the level of the plasma, but which it is perhaps not necessary 
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to compensate if its effect is considered acceptable with regard to the flux differences on 

the C1 contour. 

Fortunately, the plasma control loop will be able to compensate for all these undesirable 

phenomena.  

7.5. General solution of the plasma position control loop  

7.5.1. Open loop equations 

The electromagnetic equations, including the vacuum chamber, linking the fluxes and 

currents in the case of plasma displacement control, at Ip = constant, do not contain the 

plasma as an active conductor, according to § 4.3. In addition, the electrical resistances 

of the poloidal field coil circuit can be assumed to be null because they only affect the 

voltage of the associated generators:  

𝑉𝑔 = 𝑉𝑏 + 𝑅𝑏 ∗ 𝐽𝐵, 

where 𝑉𝑔 is the voltage of the associated generator and 𝑉𝑏 the real voltage of the coils. 

The open loop equations are therefore defined by the following: 

Equation 17: Open loop equations a, b, c and d 

a) Flux on the Nb poloidal field coils:  

∅𝐵 = 𝑀𝐵𝐵 ∗ 𝐽𝐵 + 𝑀𝐵𝐶 ∗ 𝐽𝐶 

b) Flux on the vacuum chamber modelled by Nc conductors:  

∅𝐶 = 𝑀𝐶𝐵 ∗ 𝐽𝐵 + 𝑀𝐶𝐶 ∗ 𝐽𝐶 

c) Electrical equation of the vacuum chamber:  

𝑑∅𝐶

𝑑𝑡
+ 𝑅𝐶𝐶 ∗ 𝐽𝐶 = 0 

with: 𝑅𝐶𝐶 = diagonal resistance matrix of the vacuum chamber. 

d) Flux on Np (or N1) points of the C1 contour:     

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝐽𝐵 + 𝑀𝑃𝐶 ∗ 𝐽𝐶 

where:    ∅𝑃(𝑖) = ∅𝑃(1) + 𝛥∅𝑃(𝑖), for i=1 to Np. 

At this stage, the objective would be to find the existing relationship between the fluxes 

on the C1 contour of the plasma and the fluxes of the poloidal field coils, after eliminating 

the intermediate variables, because we are going to close the loop on the voltages of the 

poloidal coils. It is the final relationship between ∅𝑃 and ∅𝐵, which would allow us to 

decide on the stability of the open or closed loop. In reality, with a passive shell like the 

vacuum chamber there are never any stability problems so the study of the stability of the 

loop, other than the conditions on the loop gains, is not necessary. Fortunately, because it 

is not possible to explicitly express the variable 𝐽𝐶, current distribution on the vacuum 

chamber, to be able to eliminate it, unless the problem is solved numerically. 

Thus, we will only eliminate the variable 𝐽𝐵 between these equations and define the 

unique equation satisfied by the vacuum chamber. 

The variable: 𝐽𝐵, is expressed from Equation 17-a: 
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𝐽𝐵 = 𝑀𝐵𝐵−1 ∗ ∅𝐵 − 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶 ∗ 𝐽𝐶 

Then, we carry this expression into the other equations. The fluxes on the vacuum 

chamber becomes from Equation 17-b: 

∅𝐶 = 𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗ ∅𝐵 + [𝑀𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶] ∗ 𝐽𝐶 

 which transforms by setting:   𝑋𝐶𝐶 = [𝑀𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶], into: 

∅𝐶 = 𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗ ∅𝐵 + 𝑋𝐶𝐶 ∗ 𝐽𝐶 

Thus, from Equation 17-c, the final vacuum chamber equation becomes:  

Equation 18: Equation of the vacuum chamber versus 𝐽𝐶 and ∅𝐵 

 

𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗
𝑑∅𝐵

𝑑𝑡
+ 𝑋𝐶𝐶 ∗

𝑑𝐽𝐶

𝑑𝑡
+ 𝑅𝐶𝐶 ∗ 𝐽𝐶 = 0 

Then, the flux on the plasma contour C1 becomes, from Equation 17-d: 

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ ∅𝐵 + [𝑀𝑃𝐶 − 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶] ∗ 𝐽𝐶 

which transforms by setting:  𝑋𝑃𝐶 = [𝑀𝑃𝐶 − 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶], into: 

Equation 19: Equation of the fluxes on C1 versus 𝑱𝑪 and ∅𝑩 

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ ∅𝐵 + 𝑋𝑃𝐶 ∗ 𝐽𝐶 and 𝑋𝑃𝐶 = [𝑀𝑃𝐶 − 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶] 

7.5.2. Closed loop equations: closure relationships 

We will close the loop at the level of the voltages of the poloidal field coils or generators 

associated with each coil, according to a general practice, comprising a proportional gain: 

α, a derived gain: β and an integral gain: γ, of the solution: 𝐽𝐵𝑒. The gains: α, β and γ, are 

generally scalars but can be, in certain particular cases, matrix gains: 

We will see in § 8 that this solution also applies to a machine with a magnetic circuit. 

Equation 20: Relations of the loop closure 

𝑉𝑏 =
𝑑∅𝐵

𝑑𝑡
= −𝑀𝐵𝐵 ∗ 𝐽𝑜 

 where:  

𝐽𝑜 = [𝛼 ∗ 𝐽𝐵𝑒 + 𝛽 ∗
𝑑𝐽𝐵𝑒

𝑑𝑡
+ 𝛾 ∗ ∫ 𝐽𝐵𝑒 . dt] 

𝐽𝐵𝑒, is the previously calculated solution which satisfies on the C1 contour of the plasma 

(§ 7.2.3): 

𝐽𝐵𝑒 = 𝐾𝐵𝑃 ∗ ∆∅𝑃 

Either: 

𝐽𝑜 = 𝐾𝐵𝑃 ∗ [𝛼 ∗ ∆∅𝑃 + 𝛽 ∗
𝑑∆∅𝑃

𝑑𝑡
+ 𝛾 ∗ ∫∆∅𝑃 . 𝑑𝑡] 

7.5.3. Closed loop: global equations 
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The vacuum chamber equation, from Equation 18, is expressed versus 𝐽𝑜, into: 

Equation 21: Vacuum chamber equation versus 𝐽𝑜 

𝑋𝐶𝐶 ∗
𝑑𝐽𝐶

𝑑𝑡
+ 𝑅𝐶𝐶 ∗ 𝐽𝐶 = 𝑀𝐶𝐵 ∗ 𝐽𝑜 

The flux on C1, from Equation 19, is expressed after derivation versus time, into: 

Equation 22: Fluxes on C1 equation versus 𝐽𝑜 

𝑑∅𝑃

𝑑𝑡
+ 𝑀𝑃𝐵 ∗ 𝐽𝑜 = 𝑋𝑃𝐶 ∗

𝑑𝐽𝐶

𝑑𝑡
 

We will show that, thanks to the specific 𝐾𝐵𝑃 matrix, the vacuum chamber equation is 

practically independent of the loop gains; which means that even if we do not know the 

exact evolution of the 𝐽𝐶  currents, the maximum values of 𝐽𝐶  and its derivatives are 

bounded and only depend on the derivative of ∅𝑃.  

Let us eliminate the variable 𝐽𝑜 between these two equations, from Equation 22 of the 

fluxes on C1, by multiplying on the left the two members of the equation by the 𝐾𝐵𝑃 

matrix whose following matrix product satisfies the identity matrix NbxNb: 

𝐾𝐵𝑃 ∗ 𝑀𝑃𝐵~𝐼𝑏𝑏, according to: Equation 12. 

The expression of 𝐽𝑜 becomes from Equation 22 of the flux expression on C1:  

𝐽𝑜~𝐾𝐵𝑃 ∗  𝑋𝑃𝐶 ∗
𝑑𝐽𝐶

𝑑𝑡
− 𝐾𝐵𝑃 ∗ 

𝑑∅𝑃

𝑑𝑡
 

Then by replacing this expression in Equation 21 of the vacuum chamber, we then obtain 

the final approximate equation of the vacuum chamber: 

Equation 23: Final approximate equation of the vacuum chamber 

[𝑋𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 ∗  𝑋𝑃𝐶] ∗
𝑑𝐽𝐶

𝑑𝑡
+ 𝑅𝐶𝐶 ∗ 𝐽𝐶 + 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 ∗ 

𝑑∅𝑃

𝑑𝑡
~0 

With: 𝑋𝐶𝐶 = [𝑀𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶]  and 𝑋𝑃𝐶 = [𝑀𝑃𝐶 − 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗
𝑀𝐵𝐶] 

The evolution of the current distribution: 𝐽𝐶, is therefore practically independent on the 

loop gains, but only depends on the variable:  

𝑑∅𝑃

𝑑𝑡
 

The resulting time constants associated with the chamber current: 𝐽𝐶, do not depend on 

the loop gains either. They are different and may be weaker than those evaluated with the 

vacuum chamber alone (§ 7.4.2). Thus, the peculiar matrix 𝐾𝐵𝑃  allows to keep the 

evolution of the vacuum chamber current practically independent on the loop gains. 

From Equation 23, we deduce the expression of the derivative of the 𝐽𝐶 distribution: 

Equation 24: Derivative of the 𝐽𝐶 current distribution 

Vol. 1 No. 1 (2025):37-101 72 



 

 

 

 
𝑑𝐽𝐶

𝑑𝑡
= −𝑍𝐶𝐶−1 ∗ [𝑅𝐶𝐶 ∗ 𝐽𝐶 + 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 ∗  

𝑑∅𝑃

𝑑𝑡
] 

with: 𝑍𝐶𝐶 = [𝑋𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 ∗  𝑋𝑃𝐶] 

Either: 

𝑑𝐽𝐶

𝑑𝑡
= −𝐾𝐶𝐶 ∗ 𝐽𝐶 − 𝐾𝐶𝑃 ∗ 

𝑑∅𝑃

𝑑𝑡
 

with: 𝐾𝐶𝐶 = 𝑍𝐶𝐶−1 ∗ 𝑅𝐶𝐶 and 𝐾𝐶𝑃 = 𝑍𝐶𝐶−1 ∗ 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 

 

We will now express the fluxes on the C1 contour of the plasma. Equation 22 of the fluxes 

on C1 becomes, as: 𝐽𝐵𝑒 = 𝐾𝐵𝑃 ∗ ∆∅𝑃 , and with the expanded expression of 𝐽𝑜  of 

Equation 20: 

Equation 25: General equation of the fluxes on C1 in closed loop 

𝛼 ∗ ∆∅𝑃 + (1 + 𝛽) ∗
𝑑∆∅𝑃

𝑑𝑡
+ 𝛾 ∗ ∫∆∅𝑃 . dt = 𝑋𝑃𝐶 ∗

𝑑𝐽𝐶

𝑑𝑡
−

𝑑∅𝑃(1)

𝑑𝑡
 

Assuming that the derivative term of 𝐽𝐶  of the second member of this equation is 

negligible or bounded, then we recognize the solution of § 7.4.1 (with 𝛾 = 0), with a 

highly resistive vacuum chamber. In general, this term cannot be neglected. Then, we will 

express the derivative of 𝐽𝐶 from Equation 24, of the vacuum chamber and report it in the 

previous Equation 25, as follow: 

Equation 26: Final equation of fluxes on C1 in closed loop 

𝛾 ∗ ∫∆∅𝑃 . 𝑑𝑡 + 𝛼 ∗ ∆∅𝑃 + [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] ∗
𝑑∆∅𝑃

𝑑𝑡

= −[1 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝] ∗
𝑑∅𝑃(1)

𝑑𝑡
 − 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐽𝐶 

Where, 𝐼𝑝𝑝 is the identity matrix NpxNp and 𝑉𝑝, the unit column vector Npx1. 

We can now see that the second member of the equation no longer contains the derivative 

of 𝐽𝐶  but only 𝐽𝐶 , which changes little in amplitude, especially when the loop time 

constants are small: between 10 ms and 100 ms. At the convergence of the first member 

of this equation, the static error at convergence is always low. It decreases as the inverse 

of the proportional or integral gain. 

We will now deduce the two main solutions based on the loop gains. 

7.5.4. The main solution with proportional and derivative gains 

The integral gain γ is zero, then the new closed-loop equation is expressed from Equation 

26 by: 

𝛼 ∗ ∆∅𝑃 + [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] ∗
𝑑∆∅𝑃

𝑑𝑡

= −[1 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝] ∗
𝑑∅𝑃(1)

𝑑𝑡
 − 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐽𝐶 
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This time we note that the term of the second member in: 𝐽𝐶, evolves little in amplitude 

compared to its derivative. The first member of this equation converges for: 𝛼 > 𝛽 and 

𝛼 ≫ 1, but the convergence time constants of the fluxes on the points of the contour C1 

are very different with a scalar proportional gain and evolve in average value around: 

𝑇~(
1 + 𝛽

𝛼
) 

On the other hand, by replacing the proportional scalar gain: α, by the following 

proportional matrix gain, coefficient matrix of the derivative term of ∆∅𝑃: 

𝛼 ∗ 𝐺𝐴 = 𝛼 ∗ [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃], 

the convergence time constant is, this time, unique on all points of the fixed C1 contour 

and equal to: 𝑇 =
1

𝛼
, with a final equation defined by: 

Equation 27: Solution with matrix proportional gain and scalar derivative gain 

[(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] ∗ [∆∅𝑃 + (
1

𝛼
) ∗

𝑑∆∅𝑃

𝑑𝑡
]

= −(
1

𝛼
) ∗ [1 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝] ∗

𝑑∅𝑃(1)

𝑑𝑡
 − (

1

𝛼
) ∗ 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐽𝐶 

Or again, as the matrix: 𝐺𝐴, of proportional gain is invertible: 

Equation 28: Final closed loop equation with matrix proportional gain and scalar 

derivative gain 

∆∅𝑃 +
1

𝛼
∗
𝑑∆∅𝑃

𝑑𝑡

= −
1

𝛼
∗ [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃]−1

∗ [(1 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝) ∗
𝑑∅𝑃(1)

𝑑𝑡
 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐽𝐶] 

The ∆∅𝑃 converge to a value close to zero with a common time constant: 𝑇 =
1

𝛼
, and with 

a static error at convergence that is all the smaller as: α and β are large. 

The value of α, must evolve between 10 and 100, for a convergence time constant varying 

from 10 ms to 100 ms. The value of β, evolves from 0 to approximately: 10, or even more. 

This solution with proportional matrix gain and scalar derivative gain, is simple and 

optimal, but it requires the prior calculation of the matrices: 𝑋𝑃𝐶 and 𝐾𝐶𝑃, defined in 

Equation 23 and Equation 24. 

Equation 29: Expression of the matrices 𝑋𝑃𝐶 et 𝐾𝐶𝑃 

The matrix: 𝑋𝑃𝐶, is expressed as a function of the basic matrices, according to Equation 

19 by: 

𝑋𝑃𝐶 = [𝑀𝑃𝐶 − 𝑀𝑃𝐵 ∗ 𝑀𝐵𝐵−1 ∗ 𝑀𝐵𝐶] 

The matrix: 𝐾𝐶𝑃, is expressed from Equation 18 and Equation 24, by: 
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𝐾𝐶𝑃 = [𝑀𝐶𝐶 − 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 ∗ 𝑀𝑃𝐶]−1 ∗ 𝑀𝐶𝐵 ∗ 𝐾𝐵𝑃 

In summary, this optimal solution requires a scalar derivative gain: 𝛽  and a matrix 

proportional gain: 𝛼 ∗ 𝐺𝐴, defined by: 

𝛼 ∗ 𝐺𝐴 = 𝛼 ∗ [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] 

7.5.5. The solution with integral gain 

The equation with integral gain γ, is obtained after derivation of Equation 26: 

𝛾 ∗ ∆∅𝑃 + 𝛼 ∗
𝑑∆∅𝑃

𝑑𝑡
+ [(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] ∗

𝑑2∆∅𝑃

𝑑𝑡2

= −[1 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝] ∗
𝑑2∅𝑃(1)

𝑑𝑡2
− 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗

𝑑𝐽𝐶

𝑑𝑡
 

Then, by replacing the derivative of 𝐽𝐶 by its value expressed in Equation 24: 

𝛾 ∗ ∆∅𝑃 + [𝛼 ∗ 𝐼𝑝𝑝 − 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐾𝐶𝑃] ∗
𝑑∆∅𝑃

𝑑𝑡
+ 

[(1 + 𝛽) ∗ 𝐼𝑝𝑝 + 𝑋𝑃𝐶 ∗ 𝐾𝐶𝑃] ∗
𝑑2∆∅𝑃

𝑑𝑡2

= −[1 + 𝑋𝐶𝑃 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝] ∗
𝑑2∅𝑃(1)

𝑑𝑡2
+ 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐾𝐶𝑃 ∗ 𝑉𝑝

∗
𝑑∅𝑃(1)

𝑑𝑡
+ 𝑋𝑃𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐾𝐶𝐶 ∗ 𝐽𝐶 

In this system of differential equations of order 2, it is necessary to use the three scalar 

gains simultaneously: 𝛼, 𝛽 and 𝛾, with, for each, values greater than 10; high gains make 

it possible to make the diagonal of each matrix, preponderant compared to the other terms 

of this matrix. In order to ensure the stability of the system with, preferably, real time 

constants, the gains must verify the inequality: 

𝛼2 − 4 ∗ (1 + 𝛽) ∗ 𝛾 ≥ 0 

In addition, the two real time constants must be comprised between 10 ms and 100 ms. 

Convergence is ensured but the solution with integral gain is more complex and does not 

provide anything more than the previous general solution with proportional and derivative 

gains. Indeed, the static error at convergence remains with the term in 𝐽𝐶  and the 

convergence time constants of the fluxes on C1 are different. In principle, the presence 

of an integral gain cancels the static error but given the impossibility of explicitly 

expressing 𝐽𝐶 and its derivatives in order to eliminate them, the integral gain can never 

cancel the convergence error. 

7.6. Possible instabilities of the plasma position control loop 

We have just seen that the plasma position control loop is always stable provided that the 

relationships between the loop gains are respected, but with high gains certain conditions 

must be respected, such as for example the progressive switching of the plasma control 

loop. Otherwise, the coil voltages generated by the loop can saturate the generators and 

create oscillatory phenomena with a risk of loss of control and therefore disruption of the 

plasma. 

7.7. Conclusion on the plasma position control loop 
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The control loop of the plasma displacements must be closed at the level of the voltages 

of the poloidal field coils, in general, using gains: proportional, derivative, and/or integral, 

scalar or matrix of the variable: ∆∅𝑃, according to Equation 20. 

This control loop applies, indifferently, to a machine with or without a magnetic circuit 

(§ 8). The gains are generally scalars with the exception of the optimal solution of § 7.5.4, 

comprising a proportional matrix gain and a scalar derivative gain. This optimal solution 

requires the calculation of the matrix: 𝐺𝐴, associated with the proportional gain: α but the 

convergence time constants of all the points of the contour C1 are identical: 𝑇 =
1

𝛼
. The 

static error at convergence decreases with increasing gains: α, varying from 10 to 100 and 

β varying from 0 to 10, for a convergence time constant comprised between 10 ms and 

100 ms. 

The use of the particular 𝐾𝐵𝑃 matrix, to close the control loop, makes the evolution of 

the 𝐽𝐶 current distribution of the vacuum chamber independent of the loop gains. The 

vacuum chamber equation, thus defined, allows the correct evaluation of the solutions of 

the plasma position loop, totally decoupled from the vacuum chamber. 

Finally, the increase in the resistivity of the metal constituting the vacuum chamber 

promotes the performance of the loop by reducing the convergence error at constant gains. 

7.8. Plasma current amplitude control 

7.8.1. Simplified control 

The control of the plasma current, after the plasma initiation period, can be achieved by 

simply controlling the central coil voltage. As the external field necessary for plasma 

equilibrium depends on the internal distribution of the plasma current, any modification 

of the plasma current will generate flux deviations on C1 which are completely controlled 

by the plasma position loop. It is simply necessary to control the plasma current with a 

time constant greater than those linked to the plasma movements. This current control 

loop is therefore slower in order to maintain plasma equilibrium when Ip varies. 

7.8.2. Plasma current control using the magnetizing distribution 

If we want the coil currents, for a machine without a magnetic circuit, to always be shaped 

by the previous solution: 𝐽𝐵𝑒 , it is recommended to control the current Ip using the 

magnetizing component: 𝐽𝐵𝑚, of the 𝐽𝐵 solution. 

It is not complicated to implement a current control loop Ip using an exponential slope 

limiter filter where the error: 𝜀 = 𝐼𝑝 − 𝐼𝑜, (Io = current reference) is first applied to the 

filter input. The output: S, of the filter, amplified by the gain: g, is then reinjected into the 

loop: 

Equation 30: Plasma current control by using the magnetizing component 

𝑑∅𝐵

𝑑𝑡
= 𝑉𝑏 = −𝑀𝐵𝐵 ∗ 𝐾𝐵𝑃 ∗ 𝑉𝑝 ∗ 𝑔 ∗ 𝑆 

where: 𝑉𝑝 dimension is: Npx1, with: 𝑉𝑝(𝑖) = 1 for i=1 to Np 

8. Machine with magnetic circuit 

8.1. Modelling the presence of iron placed in a magnetic field 

8.1.1. Relationship between induction and magnetic field 
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The relationship between the magnetic induction: 𝐵⃗ , and the magnetic field: 𝐻⃗⃗ , depends 

on the environment or material in which the magnetic configuration is located, according 

to the relation: 

Equation 31: Relationship between magnetic induction and magnetic field 

𝐵⃗ = µ𝑟 ∗ µ𝑜 ∗  𝐻⃗⃗ , 

Where: µ𝑜 = 4. π. 10−7 𝐻

𝑚
 , in Henry per meter, universal constant, is the magnetic 

permeability in vacuum or in air and µ𝑟 , the relative magnetic permeability which 

depends on the environment or material. For the iron, the magnetic permeability value 

varies from several hundred to 5000. 

Furthermore, in an environment with no internal real current distribution, the field 

verifies:  

𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗  ) = 0⃗  

8.1.2. Modelling the effect of µ𝒓 in air or vacuum 

Consider an environment whose relative permeability: µ𝑟, depends on space (x, y, z) then, 

is there a model in air or vacuum which allows us to transpose the electromagnetic 

equations of any environment, into vacuum or air? 

If this is the case, then, the virtual field: 𝐻𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  µ𝑟 ∗  𝐻⃗⃗  , in air or vacuum satisfies: 

𝐵⃗ = µ𝑜 ∗  𝐻𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

 Let us then calculate the rotational of: 𝐻𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ; we easily demonstrate that: 

Equation 32 

𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗( µ𝑟 ∗  𝐻⃗⃗  ) = µ𝑟 ∗ 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗  ) + 𝐺𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ( µ𝑟) × 𝐻⃗⃗ , 

where: ×, represents the cross product of the two vectors. 

We deduce, as: 𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗(𝐻⃗⃗ ) = 0⃗ , in the environment of iron free from real current distribution, 

that: 

Equation 33: Expression, in air, of the virtual current density located in the volume 

occupied by the material 

𝑅𝑜𝑡⃗⃗⃗⃗⃗⃗  ⃗( 𝐻𝑎𝑖𝑟
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = 𝐺𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ( µ𝑟) × 𝐻⃗⃗ = 𝐽  

In conclusion, the magnetic configuration in an environment of a variable relative 

permeability: µ𝑟, can be replaced by a magnetic configuration in a vacuum or air, thanks 

to the distribution of a virtual volume current density: 𝐽 ,  which replaces the initial 

environment at all points of its volume. 

8.2. Modelling in the air of a machine with a magnetic core 

We showed in the previous section that the iron of the magnetic circuit can be replaced 

by a volume distribution of current, in the air: 𝐽 , located in the volume of the iron. On the 

other hand, we showed in § 3.2, that this external distribution can be replaced by a virtual 

current distribution: 𝐽𝐹, located on a contour, placed inside the magnetic circuit, with 
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respect to the magnetic configuration inside the contour Cf, which contains all of the 

machine's conductors, according to Figure 21, below. 

This current distribution: 𝐽𝐹, varies in a non-linear manner depending on the real current 

distribution: 𝐽𝐵𝑟, of the coils and the characteristics of the iron. Knowledge of the exact 

evolution of this virtual distribution is of little importance for our demonstration. Let 

𝑀𝐵𝐹 be the matrix of mutual inductances, in the air, between the 𝐽𝐹 distribution of the 

iron contour Cf and the poloidal field coils (Cb contour). The flux emitted by the iron in 

the poloidal field coils is expressed by: 

∅𝐵𝑓 = 𝑀𝐵𝐹 ∗ 𝐽𝐹 

The contour Cb of the coils is interposed between the contour of the iron and that of the 

vacuum chamber containing the plasma. As a result, it plays the role of an electro-

magnetic screen or “holed” hull and assuming that the coils are well distributed and in 

sufficient number, the flux emitted by the iron inside the machine can be completely 

screened by the distribution: −𝐽𝐵𝑓, of the coils such as: 

𝑀𝐵𝐵 ∗ 𝐽𝐵𝑓 = 𝑀𝐵𝐹 ∗ 𝐽𝐹 → 𝐽𝐵𝑓 = 𝑀𝐵𝐵−1  ∗ 𝑀𝐵𝐹 ∗ 𝐽𝐹 

 

 

Figure 21 

Under these ideal conditions, the leakage flux emitted by the iron at the level of the plasma 

is null and the magnetic circuit, including the contour Cf supporting the: 𝐽𝐹, current 

distribution, can be simply replaced by a virtual current distribution 𝐽𝐵𝑡, located in the 

poloidal field coils, located this time, in the air and equal to: 

𝐽𝐵𝑡 = 𝐽𝐵𝑟 + 𝐽𝐵𝑓, with:  𝐽𝐵𝑟 =real currents of the coils. 

In conclusion, assuming a perfect screening of the flux emitted by the iron by the poloidal 

field coils, the influence of the magnetic circuit can be modelled by a virtual current 𝐽𝐵𝑓, 

located in the poloidal field coils placed in the air. This means that the 𝐽𝐵𝑒 solution in the 

air does indeed exist under these conditions and is calculated according to § 7.2.3, with 

only the poloidal field coils, in the air, as if the magnetic core did not exist. 
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8.3. Main case with incomplete screening of the iron effect 

In the general case, the flux emitted by the iron is not completely screened by the poloidal 

field coils, the number of which is too small. When the iron is not saturated, the 

magnetizing flux circulates mainly in the magnetic circuit and does not reach the plasma, 

but when the central core saturates, part of the magnetizing flux closes in the air at the 

central coil and reaches the plasma contour. 

This leakage flux in the air evolves relatively slowly compared to the speed of the plasma 

position loop and can therefore be compensated in real time. 

Thus, in the general case, we will calculate the 𝐾𝐵𝑃 matrix as for a machine without a 

magnetic circuit. In this case, the leakage flux of the unscreened iron flux must be 

considered as a disturbance in the same way as the chamber currents and will be 

compensated by the plasma position control loop. 

8.4. Conclusion on the effect of a magnetic core 

Thus, the magnetic circuit of the machine will be completely ignored for the calculation 

of the plasma position control loop. The 𝐾𝐵𝑃 matrix will be calculated in air (§ 7.2.3) 

and the loop will be closed according to Equation 20, established for a machine without 

magnetic circuit. 

9. Machine with magnetic divertor 

In this chapter, we assume that real-time plasma data are not necessary for plasma control 

and zero-field points. Simulations, based on plasma current profiles, are performed only 

to demonstrate their physical feasibility in advance and to optimize machine parameters. 

9.1. Introduction 

A machine with a magnetic divertor is characterized by the presence of one or two 

additional coils, located in the vacuum chamber near the plasma. The objective is to create 

one or two points (top and/or bottom) of zero-magnetic field in order to be able to collect 

the particles located on the external surface of the plasma including helium, plasma 

“ashes” resulting from partial fusion reactions as well as certain metal waste torn from 

the wall of the vacuum chamber by the plasma (Figure 22). 

 

Figure 22: Vertical cross section of the TORE SUPRA-WEST version machine 

with double X point from the CEA of Cadarache (France)  
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9.2. Influence of the “divertor” coil currents on the plasma equilibrium 

Let us assume that we know the plasma boundary Cp (or C1), then, for a machine in air, 

therefore without a magnetic circuit, the flux equation on the plasma contour translates, 

ignoring the plasma as a conductor (§ 4.3), by: 

∅𝑃 = 𝑀𝑃𝐵 ∗ 𝐽𝐵 + 𝑀𝑃𝐷 ∗ 𝐽𝐷 + 𝑀𝑃𝐶 ∗ 𝐽𝐶, on the plasma contour: Cp (or C1). 

This equation includes an additional term: 𝑀𝑃𝐷 ∗ 𝐽𝐷 , compared to a conventional 

machine without magnetic divertor. The 𝐽𝐷 ampere-turns are controlled to establish one 

or two zero-field points. The divertor coils cannot therefore be used for plasma position 

control. On the contrary, the 𝐽𝐷 currents disturb the fluxes on the plasma contour and 

therefore the plasma equilibrium. It is clear that only the poloidal field coils will control 

the plasma equilibrium and that these flux deviations generated by the divertor coil 

currents on the plasma contour must be cancelled by the poloidal field coils.  

The general solution will consist in considering the 𝐽𝐷 currents and their variation as an 

external disturbance to the plasma position control loop, in the same way as the vacuum 

chamber currents or the iron leakage flux. The vertical instability of the plasma in its 

elongated form, generated by the zero-field points, is mainly due to the presence of the 

𝐽𝐷 currents and their variation. As the 𝐽𝐷 currents are known in real time, it is strongly 

recommended to integrate a preprogramming of the fluxes of the poloidal field coils, for 

a machine in air or with a magnetic circuit, which oppose the flux deviations generated 

by the "divertor" coils on the fixed envelope of the plasma boundaries (§ 9.3.2), by 

ignoring the vacuum chamber, according to the equation: 

Equation 34: Cancellation of flux deviations generated by JD current 

distribution, ignoring the vacuum chamber  

𝑑∅𝐵 = −𝑀𝐵𝐵 ∗ 𝐾𝐵𝑃 ∗ 𝑑(Δ𝜓), 

where: 𝛥𝜓, are the differential fluxes generated by the 𝐽𝐷 currents, calculated from the 

flux matrix on the controlled contour: 𝜓 = 𝑀𝑃𝐷 ∗ 𝐽𝐷 and the 𝐾𝐵𝑃 matrix, calculated 

according to § 7.2, on the contour of the plasma boundary envelope. Indeed, making the 

fixed contour Ce iso flux in the presence of only the currents: 𝐽𝐷, allows to cancel the 

distribution of the magnetic field generated by the currents: 𝐽𝐷, inside the envelope Ce, 

independently of the size or position of the plasma, located inside the envelope. As the 

reference contour of flux control is a fixed contour: the envelope of the plasma 

boundaries, the previous equation translates to: 

Equation 35: Pre-programming voltage for compensating for flux deviations 

generated by JD currents 

𝑉𝐵𝑝𝑟𝑜𝑔 =
𝑑∅𝐵

𝑑𝑡
= −𝐾𝐵𝐷 ∗

𝑑𝐽𝐷

𝑑𝑡
 

Where, the matrix 𝐾𝐵𝐷 is a constant matrix of dimension: NbxNd. 

In general, the installation of the currents 𝐽𝐷, must be carried out just after the plasma 

initiation phase, during the growth phase of the plasma current from the moment when 

the generators associated with the poloidal field coils are in service or later, at the 

beginning of the plateau phase of the plasma current. 
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During the growth of the divertor currents: 𝐽𝐷, the preprograming voltage (Equation 35) 

must not exceed 20% of the maximum voltage of each generator in order to allow the 

control of the plasma current and that of the plasma equilibrium. The limitation of the 

derivative of 𝐽𝐷 must be able to allow the rapid growth of the « divertor » currents, to 

obtain the zero-field points; also, we suggest limiting the derivative of the current: 𝐽𝐷, 

using an external inductance, if necessary, connected in series with each divertor coil. We 

will see in § 9.5.2, the advantages of the presence of this inductance.  

This preprograming voltage of open loop compensation of the effect of the 𝐽𝐷 currents at 

the level of the poloidal field coils, even ignoring the vacuum chamber, allows to greatly 

reduce the stress on the plasma position control loop. It therefore allows, apart from the 

influence of the currents induced in the vacuum chamber, to make the control of the zero-

field points and that of the plasma practically independent. 

The poloidal field coils will always control the position of the plasma as for a machine 

without a divertor. We will see how this control can be achieved in the following §. 

9.3. Control of the plasma equilibrium 

9.3.1. Foreplay 

We treated, in the previous section 7, the case of a plasma with a constrained boundary 

on the fixed contour C1 and showed that the flux deviations on the contour C1 are 

cancelled by the plasma position control loop by reinjecting them at the coil voltage level 

using a particular matrix (Equation 20). This rule remains valid for a machine with or 

without a magnetic circuit. In this case, it involves controlling the flux on the fixed 

contour: C1, desired iso flux, using poloidal field coils. Furthermore, we showed in § 

7.5.4 that the plasma convergence time constant (in seconds) on its contour is equal to the 

inverse of the scalar proportional gain in the case of a control loop with proportional 

matrix gain and scalar derivative gain. 

In the case of a machine with a divertor, the plasma boundary as well as the zero-field 

point evolve in space, depending on the internal profile of the plasma for a fixed waste 

extraction zone in the vacuum chamber. We will show that despite the changing shape of 

the plasma boundary the problem of plasma equilibrium is also solved by controlling the 

flux deviations, but on a variable contour unlike a plasma with a constrained boundary. 

9.3.2. Principle of plasma boundary identification 

The different cases of plasma equilibrium with magnetic “divertor,” calculated according 

to the different plasma current profiles and obtained by solving the “Grad-Shafranov” 

equations show a slight spatial variation of the plasma boundaries. We will therefore 

consider the outer envelope curve of all these elliptical-shaped boundaries, thus 

calculated. This curve, noted: Ce, the envelope of the plasma boundaries contains all the 

plasma sections studied according to the internal distribution of the plasma current. 

We will now define the presumed plasma boundary on which the flux deviations will be 

calculated as in the case of a machine with constrained boundary.  

We know how to calculate in real time the fluxes ∅(𝑖) and the tangent fields: 𝐵𝑡(𝑖), on a 

large number of points: M(i), of this fixed envelope curve, thanks to the current 

distribution: 𝐽𝑝, located on a fixed contour positionned inside all the calculated plasma 

boundaries and which satisfies the magnetic measurements. As the plasma boundary is 

located close to the envelope, we can affirm that a limited development of the flux on the 
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envelope, according to the normal to the envelope, to the first order, is sufficient to 

estimate the fluxes up to the presumed plasma boundary according to the equation: 

Equation 36: Limited development of flux from the envelope to the plasma  

∅𝑜 = ∅(𝑖) + 2 ∗ 𝜋 ∗ 𝑟(𝑖) ∗ 𝐵𝑡(𝑖) ∗ 𝑑(𝑖), where: 

• ∅0, the value of the uniform flux on the plasma boundary, 

• ∅(𝑖), the flux at each point M(i) of the envelope for i=1 to Np > Nb, 

• 𝑟(𝑖), the radial distance from point M(i) to the machine axis, 

• 𝐵𝑡(𝑖), the tangential field at point M(i) of the envelope, 

• 𝑑(𝑖) , the distance according to the normal at point i, from M(i) to the plasma 

boundary. 

We will note: P(i), the points calculated, according to the previous equation, distant from 

d(i) according to the normal to the envelope at the points M(i), with: 

Equation 37: Expression of d(i) 

𝑑(𝑖) =
(∅0 − ∅(𝑖))

𝐾(𝑖)
 

and  𝐾(𝑖) = 2 ∗ 𝜋 ∗ 𝑟(𝑖) ∗ 𝐵𝑡(𝑖) 

Finally, we will define: 𝜓(𝑖), the fluxes calculated at points P(i), which correspond to the 

fluxes on the presumed boundary of the plasma, located inside the envelope. 

The existence of the solution of the exact plasma contour requires knowledge of the flux: 

∅0, on the plasma boundary. In other words, it is necessary to define, at least, a fixed 

reference point on the envelope, common to all calculated plasma boundaries, on which 

the flux on the supposed plasma boundary is calculated. 

We will first define the fixed reference point where all plasma boundaries pass: for 

example, the point M(1), located on the envelope: Ce. The choice of this reference point 

is not trivial; it is the point, common to all free plasma boundaries. There is therefore no 

constraint on the plasma boundary, with this definition, whose boundary remains free; the 

value of the distance: d(1), is therefore zero since M(1) is located on the envelope. The 

exact plasma boundary is determined when it passes through point M(1). 

In the main case, this point, common to all the free plasma boundaries, does not exist, and 

it will be necessary to choose a fixed point on which the plasma boundary will be forced 

and which is compatible with the establishment of a free zero-field point (§ 9.5). The 

plasma boundaries envelope shall be assessed with all constraints, including the reference 

point location. 

The value of the flux: ∅0, on the plasma boundary will therefore be that calculated at the 

fixed-point M(1) where the boundary is supposed to pass: 

𝜓(1) = ∅0, at point M(1) of the envelope 

Thus, if the plasma boundary actually passes through point M(1), where the flux is 

calculated, then the presumed plasma boundary is exact and completely determined; the 

fluxes: 𝜓(𝑖), calculated at points P(i) are all equal to ∅0, to the nearest second order. 

9.3.3. Principle of plasma position control 
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Let us imagine that the plasma has moved away from its previous equilibrium position, 

then the presumed plasma boundary calculated with a flux at point M(1) equal to ψ(1), is 

no longer iso flux but allows the calculation of the new values of d(i) defining the new 

presumed plasma boundary passing through point M(1) where: d(1)=0. 

The calculation of the fluxes 𝜓(𝑖) at the new points P(i) allows the evaluation of the flux 

deviations with respect to point M(1). Assuming that it is possible to cancel these flux 

deviations, then using the same law for calculating the presumed boundary will force the 

points P(i) associated with the term d(i) to converge towards the exact boundary of the 

plasma with, at equilibrium: 𝜓(1) = ∅0, at point M(1). 

We will see in the following section, how to express the flux deviations. 

9.3.4. Principle of calculating the flux deviations 

We will now determine the flux deviations on the presumed plasma contour in the case 

where the plasma moves due to a magnetic disturbance internal or external to the plasma. 

We will distinguish two cases, depending on the sign of d(i): 

• Case 𝑑(𝑖) > 0, where the presumed plasma boundary remains inside the envelope: 

If the plasma boundary moves away from point M(1) then the flux calculated at point 

M(1): 𝜓(1), becomes different than ∅0, the flux value on the plasma boundary. We will 

calculate the new values of d(i) with the value of 𝜓(1), as the flux reference value on the 

presumed plasma boundary which is therefore no longer iso flux and then we will 

determine the flux deviations on the presumed plasma contour at the new points P(i): 

Δ𝜓(𝑖) = 𝜓(𝑖) − 𝜓(1), not nul for: 𝑖 = 2 𝑡𝑜 𝑁𝑝. 

This calculation is similar to that of a plasma with a constrained boundary on a fixed 

contour. In the present case, the presumed plasma contour is not fixed but evolves over 

time inside the envelope. 

• Case 𝑑(𝑖) ≤ 0, where the plasma boundary overlaps the envelope at some points: 

In this specific case, some consecutive values of d(i) become negative. This simply means 

that the associated points P(i) are located outside the envelope. The flux deviations at 

points P(i) where d(i) is negative, will then be calculated at points M(i) on the envelope 

by: 

Δ𝜓(𝑖) = ∅(𝑖) − 𝜓(1), at points M(i) where: 𝑑(𝑖) ≤ 0. 

Indeed, in this case the envelope is the physical limit that the plasma must not cross as in 

the case of a fixed boundary. 

The flux deviations on the other points P(i) remaining inside the envelope will be 

calculated as in the case of positive d(i). 

In summary, the flux deviations on the presumed plasma boundary will be calculated as 

follows, depending on the sign of d(i), for i=2 to Np and with: ∅0 = 𝜓(1), in Equation 

37: 

• If 𝑑(𝑖) > 0, then: Δ𝜓(𝑖) = 𝜓(𝑖) − 𝜓(1) , else: 

• If 𝑑(𝑖) ≤ 0, then: Δ𝜓(𝑖) = ∅(𝑖) − 𝜓(1). 
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9.3.5. Controlling the displacements of a plasma with a free boundary 

We defined in the previous section how to calculate the flux deviations on the presumed 

plasma contour. 

These flux deviations will then be reinjected into the plasma position control loop at the 

level of the poloidal coil voltages using the 𝐾𝐵𝑃 matrix, calculated, in this case, on the 

fixed contour of the envelope: Ce, with the constraint of an exact flux at point M(1) and 

using only the poloidal field coils, according to § 7.2. The plasma position control loop 

will be closed as described in § 7.5.4, according to the optimum solution with proportional 

matrix gain and scalar derivative gain. 

The plasma control loop allows the plasma boundary to be forced to pass through point 

M(1) and to keep the plasma inside the envelope. 

9.4. Control of the plasma current 

The plasma current control would be achieved from subsection 7.8. 

9.5. Control of the zero-field point and of the associated separatrix 

9.5.1. Foreplay 

The zero-magnetic field point(s) are generated using one or two additional coils (Cd 

contour) located in the vacuum chamber and positioned near the plasma in the upper 

and/or lower part. For a given plasma current Ip, there is a current value 𝐽𝐷, in the same 

direction as that of the plasma, which allows the generation of one or two zero-field 

points. As the plasma adapts and deforms with the magnetic field, the solution is difficult 

to put into an equation without coupling with a calculation code. It is necessary to 

generate a zero-field point but also to simultaneously control the separatrix passing 

through this zero-field point by ensuring that the latter enters the impurity absorption 

cavity, at two fixed points located on the divertor coil, as illustrated in Figure 23, below. 

 

Figure 23:  Case of operation with a single low X point of the Tokamak TORE SUPRA 

WEST version. 

In the case of a constrained zero-field point: either fixed or positioned on a trajectory 

defined in advance, it will be necessary to couple plasma data in real time and to deform 
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the plasma boundary to ensure convergence towards the desired zero-field point. This 

procedure is not flexible and requires coupling plasma equilibrium calculation data. 

In the case of a free zero-field point, the convergence solution towards the zero-field point 

occurs naturally and does not require, in general, deformation of the plasma boundary. It 

is this latter, more flexible and simpler solution that we will develop. 

9.5.2. Principle of control of a free zero-field point 

The general control of the zero-field points requires that the separatrix of the zero-field 

point(s) always pass through two fixed points (C and D), located on the “divertor” coil, 

for all profiles of the plasma, as shown in the previous figure and schematized in Figure 

24, for each of the two “divertors”. This constraint allows the correct evacuation of the 

waste generated by the plasma in the cavities of the “divertor.” 

The principle of controlling the existence of one or two zero-field points is based on the 

equality of the fluxes at the fixed points C and D: ∅𝐶 = ∅𝐷 , of each coil since the 

separatrix passing through these two points is iso flux when the zero-field point is 

reached. Indeed, with the only distribution: 𝐽𝐷, incoming: 

∆∅ = ∅𝐶(𝐽𝐷) − ∅𝐷(𝐽𝐷) < 0 

 

 

Figure 24: Zero-field point Mx with separatrix passing through two fixed 

points C and D, for a plasma current and a divertor current  of same sign 

It is the point D whose distance from the axis of the machine is the greatest which sees 

the highest flux. Thus, with only the plasma current, entering, ∆∅ is positive. 

We saw in § 9.2 that the derivative of the currents: 𝐽𝐷, must be limited in maximum value 

during the growth of the currents: 𝐽𝐷, in order to allow the control of the position of the 

plasma and that of the plasma current with only 80% of the maximum voltage of the 

generators associated with the poloidal field coils. It is suggested to install an external 

inductance connected in series with each "divertor" coil. The value of this inductance 
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must be as large as possible and limited to a value allowing the growth of the current: 𝐽𝐷, 

with a derivative equal to 1.2 to 1.5 times the maximum value required for the installation 

of the zero-field point. The presence of this inductance makes it possible to significantly 

reduce the electromagnetic disturbances generated by the currents: 𝐽𝐷 and their variation. 

There is no more high-frequency chopping of the generator voltage. 

Moreover, thanks to this smoothing inductance, the currents of the divertor coils can be 

simply voltage controlled using a scalar proportional gain: G, i.e. a generator voltage: 𝑉𝑑, 

defined by: 

𝑉𝑑 = 𝐺 ∗ (∅𝐶 − ∅𝐷), with: G > 10. 

This simple control of the free zero-field point, associated with each divertor coil, requires 

the installation of two absolute flux loops, positioned at points C and D of each coil. This 

simplified control does not allow us to determine the spatial position of the zero-field 

point(s) but we only know that they exist. 

We will see in the next section, the possibilities offered to assess in real time the spatial 

position of the zero-field points. 

9.5.3. Principle of calculating the position of a free zero-field point 

The calculation of the position of zero-field point is based on the assumption that the 

separatrix portions between the zero-field point Mx and the fixed points (C and D), 

located on the divertor coils, can be assimilated to portions of straight lines as illustrated 

in Figure 24. 

Assuming that it is possible to install external field measurements at points C and D 

(vertical and radial fields), then the slopes of the lines Mx-C and Mx-D are directly 

determined by the components of the fields measured at points C and D, to the nearest 

sign. The position of the zero-field point can thus be calculated in real time at the point 

of intersection of the lines: Mx-C and Mx-D, when the condition: ∅𝐶 − ∅𝐷 = 0 , is 

reached. 

Without external field measurement, it will be necessary to use the 𝐽𝑝  solution to 

calculate the fields at points A and B, positioned inside the contour of the magnetic 

measurements and located respectively on the lines Mx-C and Mx-D. Points C and D 

being fixed, points A and B are therefore mobile and it is necessary to define a criterion 

that allows to determine the position of points A and B in real time. Finally, we will note 

that when the zero-field point is reached, the fluxes at points A, B, C and D are equal, 

that is when: ∅𝐴 = ∅𝐵 or ∅𝐶 = ∅𝐷. 

It is still necessary to know how points A and B, mobile, are defined in real time; this is 

what we will see in the next section. 

9.5.4. Positioning criteria for points A and B 

Since points C and D are fixed, we must first define a criterion that allows us to determine 

the position of points A and B such that the fields at points A and B are always aligned 

according to the respective directions of the slopes of lines A-C and B-D, defined by the 

components of the fields: 𝐻𝑎⃗⃗⃗⃗  ⃗ and 𝐻𝑏⃗⃗⃗⃗  ⃗, at points A and B. 

Let us define an initial position of the moving points A and B such that lines C-A and D-

B converge. Let us then calculate the magnetic fields at points A and B. Then, the two 
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calculated fields: 𝐻𝑎⃗⃗⃗⃗  ⃗  and 𝐻𝑏⃗⃗⃗⃗  ⃗ , are generally not aligned with the slopes of the two 

respective lines but define the slopes of the lines for the next iteration. Since A and B are 

mobile by definition, these points are moved on the fixed line: A-B, so that the slopes of 

the new lines at the points: 𝐴 + ∆𝐴 and 𝐵 + ∆𝐵, coincide with the field ratios: field 

according to z/field according to r, calculated at the previous points A and B. And so on, 

until the convergence of the alignment of the lines with the fields. 

With this criterion, the alignment is obtained after 2 to 5 iterations. Let us take the 

example of a uniform field in space, then in this case, a single iteration is enough for the 

alignment of the slopes of the lines with the fields.  

The assumed position of the Mx point is always defined as the intersection point of the 

lines C-A and D-B and can be determined in real time after 2 to 5 alignment convergence 

iterations. When the zero-field is reached at the Mx point, the lines C-A and D-B converge 

towards the separatrix and the fluxes at points A and B or C and D, are equal. 

Thanks to this criterion, the lines always pass through the two fixed points C and D. The 

Mx point is a free zero-field point whose spatial position is defined only by the plasma 

current distribution and the amplitude of the 𝐽𝐷 currents. 

This criterion makes it possible to determine the presumed position of the zero-field point 

in real time, when establishing the zero-field point (growth of 𝐽𝐷 currents). On the other 

hand, this method does not allow precise control of the presence and position of a zero-

field point and it will be necessary to control, in real time, the fluxes at points C and D. 

Control of the fluxes at points A and B instead of C and D is also possible but under 

certain conditions of positioning of the line A-B, as explained in the following section. 

9.5.5. Special condition of evaluating fluxes on the line AB 

The fluxes generated at points A and B, by the only incoming current distribution: 𝐽𝐷, of 

the divertor must satisfy the inequality, calculated with the mutual inductance in air: 

 ∆∅ = ∅𝐴(𝐽𝐷) − ∅𝐵(𝐽𝐷) < 0, with points A and B positioned as in Figure 24. 

It is practically the point with the greatest radial distance that sees the highest flux. On 

the contrary, with the only plasma current we obtain the opposite inequality, at the same 

points A and B. Indeed, when approaching the zero-field point, the lines AC and BD 

converge towards the separatrix where the fluxes at points A and B become equal. The 

zero-field point is reached when: ∆∅ = 0. 

It is necessary that the evolution of the mutual inductance of the divertor coil with the 

points of the line AB is a monotonically increasing function according to: r, in order to 

ensure the convergence of the slopes of the lines with the fields at points A and B and to 

evaluate the fluxes at these points. 

In order to verify the previous property with the data of the Tokamak TORE SUPRA 

version WEST, we calculated the mutual inductance between the coil of the divertor and 

40 points, increasing according to r, located on the line AB, parallel to the median plane 

of the coil and for three constant distances h according to the z axis of 15, 20 and 25 cm. 

The median plane is defined, in the vertical plane: r, z, by the line passing through the 

centres of conductors 1 and 4 (4 conductors connected in series). 

Figure 25 shows the three mutual inductance curves, calculated on the line AB parallel to 

the median plane of the coil, as a function of the distance h, along z, from the median 
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plane of the coil. It can be seen that beyond point 31, for h=15 cm, the mutual inductance 

is no longer monotonically increasing along r. It is therefore necessary to modify the 

inclination of the line AB relative to the median plane of the divertor coil. 

The correction consists of raising the height, along z, of point 1, from 20 cm to 35 cm and 

keeping the height of point 40 at 20 cm, values that allow segment AB to be kept inside 

the contour of the magnetic measurements. Figure 26 shows the evolution of the mutual 

with a straight-line AB whose left end (point 1) has been raised by 15 cm. This inclination 

correction ensures correct control of the fluxes at points A and B, whatever the positions 

of points A and B, with A always placed to the left of B. 

 

 

Figure 25 

 

Figure 26 
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9.6. Application to the case of the WEST project of the TORE SUPRA machine 

In the particular case of the WEST project, the plasma is coupled to a hybrid heating 

antenna which requires a plasma boundary passing exactly through 3 fixed points on the 

exterior side of the machine (UROG, EROG and LROG) in order to optimize the transfer 

of energy. (Figure 23). On the other hand, only one zero-field point is necessary at the 

bottom of the plasma with its control associated with the two points of the separatrix. 

With regard to plasma position control, only the exact definition of the plasma boundary 

envelope matters, whether or not there are zero-field points. Plasma position control is 

therefore practically independent on the zero-field point control. On the other hand, it will 

be necessary to introduce the constraint of passing the plasma boundary through 3 fixed 

external points (UROG, EROG and LROG). 

Plasma control will therefore be handled as follows: 

a) Definition of the envelope Ce and a number of flux calculation points on the 

envelope: at least 40 points are necessary including the three external stress points. 

This is the most delicate work because it is necessary, for each point of the envelope, 

to calculate the angle of the tangent to Ce, at this point and to ensure that the envelope 

has a regular curvature. 

b) Fixing an exact flux at the only external EROG point where the calculation of the 

plasma flux is carried out: 𝛹(1), for the calculation of the 𝐾𝐵𝑃 matrix. The other 

two points will always be very close to the estimated values but there is, if necessary, 

the possibility of applying 2 additional constraints on the other two points in order to 

force the border to get closer to these points. 

c) Control of plasma position according to § 9.3 with the reference point of the fluxes 

at point M(1) with: d(1)=0, at the EROG point. The calculation of the other distances 

d(i) is evaluated as prescribed in the relevant section. Then, the values of the flux 

deviations: ∆𝛹(𝑖) =  𝛹(𝑖) − 𝛹(1), on Ce of which calculated then reinjected into 

the loop. The 𝐾𝐵𝑃 matrix will be calculated at least with the constraint of the exact 

flux at the EROG point N°1, using only the poloidal field coils. 

d) The real-time poloidal coil voltages are the sum of a preprograming voltage (see § 

9.2), a voltage generated by the plasma position loop and a voltage generated by the 

plasma current control loop. 

e) The control of the zero-field point being independent from the plasma control, the 

method currently used can be re-applied but it is still possible to define a strategy 

without coupling physics by using a free zero-field point (see § 9.5). 

f) Finally, the control of the plasma current can be done according to § 7.8.2. 

Unfortunately, the collaboration with the TORE SUPRA team, in Cadarache, could not 

be initiated due to the lack of human resources and also the time allocated to carry out the 

modifications. 

10. Main conclusion  

10.1. Using only magnetic measurements associated with the poloidal field coils 

This document shows, without detour, that the control of the plasma position and that of 

the amplitude of the plasma current can be carried out simply using only magnetic 

measurements for all Tokamak type machines with or without magnetic circuit and with 

or without magnetic "divertor". On the other hand, the processes implemented, thanks to 

these measurements, are simple, conventional, and based on the classical laws of 

electromagnetism. The plasma position loop being efficient (see below), the only poloidal 
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field coils are sufficient for the control of the plasma position. It is shown that there exists 

a 𝐾𝐵𝑃 matrix, of dimension NbxNp, which makes it possible to decouple the plasma 

position control loop from the vacuum chamber. Finally, there exists an optimal solution 

of the plasma position control loop (§ 7.5.4) with proportional matrix gain and scalar 

derivative gain, allowing high gains. With this solution, the convergence time constant is 

practically the same on all points of the reference contour and can be set between 10 ms 

and 100 ms. 

Finally, the preprograming voltage required to compensate for the flux deviations 

generated by the currents of the magnetic divertors, if any, makes it possible to make the 

control of the zero-field points and the control of the plasma position, practically 

independent. 

10.2. Magnetic measurements 

In the "industrial" machines of the near future, magnetic measurements are essential 

elements for plasma control that require reliable, robust measurements with a high signal 

level in order to minimize electromagnetic pollution of the signal. As explained in § 6, 

only absolute flux measurements should be installed. Field measurements are useful but 

not essential for position and plasma current control. The plasma current is evaluated, 

with very good accuracy, by the sum of the ampere-turns of the internal distribution: 𝐽𝑝, 

which satisfies the flux measurements (§ 5).  

The minimum number of absolute flux measurements, without redundancy, should be at 

least equal to: 𝑁𝑓𝑙𝑢𝑥 = 12, or about 17 to 20 measurements with redundancy in case of a 

faulty measurement. 

10.3. Position control of a plasma with constrained boundary (fixed contour) 

In the case of a machine without a magnetic divertor but with or without a magnetic 

circuit, the control of the plasma equilibrium would be achieved by reinjecting the flux 

differences: ∆∅𝑃, calculated on Np (Np> Nb) points of the fixed contour of the plasma, 

at the level of the voltages of the poloidal field coils using the optimal solution developed 

in (§ 7.5.4). 

10.4. Position control of a free boundary plasma (floating contour) 

In the case of a “free” boundary plasma, for machines with or without a magnetic circuit, 

the evaluation of the flux deviations is carried out on the presumed boundary of the 

plasma calculated in real time and which is a moving contour located inside the envelope 

of the free boundaries of the plasma. 

The flux deviations, thus calculated, are then reinjected at the level of the voltages of the 

poloidal field coils, as in the case of a fixed plasma contour but with a 𝐾𝐵𝑃 matrix 

evaluated on the envelope of the plasma boundaries. The plasma position control loop 

remains the same as for a fixed plasma contour but the flux convergence time constants 

are this time slightly different. 

In the case of machines with a magnetic divertor, the derivative of the currents of the 

divertor coils must be imperatively limited in maximum value so as not to destabilize the 

plasma (§ 9.2). 

10.5. Zero-field point control for machines with divertor 

We have suggested to control free zero-field points (§ 9.4.2), a process that does not 

require to calculate in real time the presumed position of the zero-field points and that 
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does not distort the plasma boundary. This extremely simple process requires to control 

the flux difference between two fixed points, located on the coil of each divertor. 

This only requires the installation of additional absolute flux loops, placed at the two 

fixed points of each divertor coil and an inductance connected in series with each divertor 

coil. Thus, the generator voltage associated with the divertor will be simply controlled 

with a simple proportional gain: 

𝑉𝑑 = 𝐺 ∗ (∅𝐶 − ∅𝐷), with G a positive real number. 

Furthermore, as explained in § 9.2, it will be necessary to install the zero-field points by 

limiting the value of the derivative of the divertor currents so that the preprograming 

voltage generated to compensate for flux deviations at the envelope contour does not 

exceed 20% of the maximum value of each generator during the plasma current growth 

phase or the plasma current plateau phase. This limitation would be achieved, if 

necessary, using an external inductance connected in series with each divertor coil. 

10.6. Voltage input of the poloidal field coils 

The voltages of the poloidal field coils (or associated generators) are generally the sum 

of three signals: 

• The voltage generated by the plasma position control loop, 

• The voltage generated for controlling the amplitude of the plasma current (§ 7.8.2), 

• The preprograming voltage for compensation of the plasma differential fluxes, 

generated by the growth of the “divertor” currents on the plasma envelope (§ 9.2). 

10.7. Final conclusion 

There is no simpler plasma control process than with only magnetic measurements 

associated with only poloidal field coils, mainly absolute fluxes. For a machine of the 

future, simplicity rhymes with reliability. 

11. ANNEXE I: Basic documentation 

11.1. Expression of complete elliptic integrals of the 1st and 2nd kind 

The elliptic integrals of the first and second kind (LEGENDRE, Avril 1792) are involved 

in the expression of the magnetic field and this of the mutual inductances between coaxial 

circular wires. They are respectively defined by:  

Equation 38: Elliptic integrals of first and second kind 

𝐾(𝑘) = ∫
𝑑𝜑

√1−𝑘2𝑠𝑖𝑛2𝜑

𝜋

2
0

  and  𝐸(𝑘) = ∫  √1 − 𝑘2𝑠𝑖𝑛2𝜑
𝜋

2
0

𝑑𝜑 

They will be calculated using extremely convergent series (3 to 6 iterations depending on 

the precision: e = Abs(a-b), using the following algorithms: 
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Figure 27: Algorithm for calculating E(k) 

 

Figure 28: Algorithm for calculating K(k) 

11.2. Expression of the magnetic field or induction created by a filiform circular 

wire at a point M in space 

11.2.1. Documentation  

According to the literature (MAXWELL, 1873), the calculation of the magnetic 

induction: 𝐵⃗ , is obtained by integrating the vector potential: 𝐴 , on the circular wire then 

by calculating the magnetic induction according to the formula: 𝐵⃗ = 𝑟𝑜𝑡𝐴 . The 

calculation of the magnetic field or induction requires the evaluation of the complete 

elliptic integrals of the first and second kind: 𝐾(𝑘) and 𝐸(𝑘). 

The magnetic field: 𝐻⃗⃗ , is linked to the magnetic induction: 𝐵,⃗⃗  ⃗ by: 𝐵⃗ = µ𝑜𝐻⃗⃗ , in air or 

vacuum. 

11.2.2. Formulation of the magnetic field at a point M in space 

Consider a filiform circular wire (negligible conductor diameter) of large radius: a, 

located in a horizontal plane at altitude: Z= A, centred on the z axis and traversed by a 

current: I. 
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The magnetic field created by the wire at a point M (r, θ, z) in space is expressed in 

cylindrical coordinates according to the relations: 

Equation 39: Expression of the magnetic induction created by a filiform circular wire at 

a point M in space and in air: µ𝑜 = 4 ∗ 𝜋 ∗ 10−7 

𝑘2 =
4 ∗ 𝑎 ∗ 𝑟

(𝑟 + 𝑎)2 + (𝑧 − 𝐴)2
 

 

𝐵𝑟 =
µ𝑜 ∗ 𝐼

2𝜋
∗
(𝑧 − 𝐴)

𝑟
∗

1

  [(𝑟 + 𝑎)2 + (𝑧 − 𝐴)2]0.5

∗ [−𝐾(𝑘) +
𝑟2 + 𝑎2 + (𝑧 − 𝐴)2

(𝑟 − 𝑎)2 + (𝑧 − 𝐴)2
∗ 𝐸(𝑘)] 

𝐵𝜃 = 0 

𝐵𝑧 =
µ𝑜 ∗ 𝐼

2𝜋
∗

1

  [(𝑟 + 𝑎)2 + (𝑧 − 𝐴)2]0.5
∗ [+𝐾(𝑘) +

𝑎2 − 𝑟2 − (𝑧 − 𝐴)2

(𝑟 − 𝑎)2 + (𝑧 − 𝐴)2
∗ 𝐸(𝑘)] 

 

11.3. Expression of the mutual inductance between two filiform coaxial circular 

wires 

11.3.1. Documentation: Maxwell (GROVER F.W, 1916) 

According to Maxwell (GROVER F.W, 1916), a famous mathematician of the 19th 

century, the mutual inductance between two filiform coaxial circular wires of large radii: 

a1 and a2, whose planes are distant along the axis Oz by the height: d12, is expressed 

according to the following basic formula with the elliptic integrals of the first and second 

kind as a function of k. 

Equation 40: Basic expression of the mutual inductance between two coaxial circular 

wires 

𝑘 =
2 ∗ (𝑎1 ∗ 𝑎2) 0.5

[(𝑎1 + 𝑎2)2 + 𝑑122]0.5
 

𝑀12 = µ𝑜 ∗ (𝑎1 ∗ 𝑎2) 0.5 ∗ [(
2

𝑘
− 𝑘) ∗ 𝐾(𝑘) −

2

𝑘
∗ 𝐸(𝑘)] 

In the particular case where the two wires are very close, or even coincide, (case of the 

self-inductance of a wire), the value of k is: 1 and the function 𝐾(𝑘) diverges. Thus, the 

calculation of the inductance of a turn of circular wire (diameter: d) and large radius: a, 

will in this case be calculated by the Kirchhoff formula: 

𝐿 = µ𝑜 ∗ 𝑎 ∗ [𝐿𝑛 (16 ∗
𝑎

𝑑
) −

7

4
]   with:

𝑑

𝑎
< 0,05 

Another simpler formulation of the mutual inductance evaluated by Maxwell and 

obtained by changing variables is presented below: 

Equation 41: Other expression of the mutual inductance between two coaxial circular 

wires 
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𝑀12 = 2 ∗ µ𝑜 ∗ (
𝑎1 ∗ 𝑎2

𝑥
) 0.5 ∗ (𝐾(𝑥) − 𝐸(𝑥)) 

𝑥 =
𝑟1 − 𝑟2

𝑟1 + 𝑟2
   

𝑟1 =  ((𝑎1 + 𝑎2)2 + 𝑑122)0.5  𝑎𝑛𝑑 𝑟2 =  ((𝑎1 − 𝑎2)2 + 𝑑122)0.5 

This time, the elliptic integrals are evaluated from the parameter: x different of k. 

11.4. Expression of mutual inductances between machine conductors 

The different conductors of the machine including the poloidal field coils, the « divertor » 

coils and the vacuum chamber are modelled by a set of coaxial circular conductors 

arranged according to a geometry specific to the contour. The mutual inductances 

between the different conductors are therefore generated by averages calculations 

between contours from the fluxes created by coaxial circular wires. 

12. ANNEXE II: Implementation of numerical calculations 

The basic functions and subprograms defined below were created with VBA (Visual 

Basic for Application) language, included in Microsoft Excel and therefore accessible to 

everyone. All programming, defined below, can be easily transposed into other 

programming languages like Fortran, Python, MATLAB, etc. 

12.1. Calculation and verification of elliptic integrals of the 1st and 2nd kind 

The elliptic integrals 𝐾(𝑘)  and 𝐸(𝑘)  are evaluated by functions calculating rapidly 

convergent sequences with a precision criterion, according to the algorithms in § 11.1. 

 

Figure 29: Function calculating K(k) 
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Figure 30: Function calculating E(k) 

 

 

Figure 31: Evolution of the elliptic integrals E(k) and K(k) versus k 
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In general, a precision of 10-3 is sufficient with the exception of the calculation of 𝐾(𝑘) 

in the vicinity of k=1 where a precision of 10-6 or 10-7 is required in certain cases: very 

close wires or calculation of the magnetic field in the vicinity of the conductor. 

12.2. Calculation of the magnetic field created by a filiform circular wire 

The calculation of the magnetic field (induction) is carried out according to the 

formulation of § 11.2.2 in Equation 39. 

This calculation is carried out in the subroutine below. As it is not impossible, with VBA 

to directly express the Br and Bz values, components of the magnetic induction as an 

external argument, of the main program; the latter has been transformed into two 

independent functions BR and BZ which calculate these values individually. 

The arguments are: 

• Point M defined by: M(r, z). 

• Circular wire defined by: Ra=large radius and Za=altitude according to Oz of the 

plane of the wire. 

• Precision = parameter for calculating elliptic integrals (10-3 to 10-6). 

 

Figure 32: Function evaluating the radial field Br 
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Figure 33: Function evaluating the vertical field Bz 

The BR and BZ functions were tested by calculating the circulation of the magnetic field 

on a circular contour of radius: e, and centred on the conductor (Ra) with e < Ra. The 

circulation of H=B/µ𝑜 on the previous circular contour returns the value: 1 and the value 

0 in the case where the contour does not encircle the conductor. Below is the control 

subroutine: 

 

Figure 34: Subroutine evaluating the field circulation on a closed contour  
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12.3. Calculation of mutual inductances between coaxial circular wires 

The calculation of the mutual inductances between two distant coaxial circular wires can 

be carried out using one of the two formulas established by Maxwell, shown in § 11.3. 

We selected the expression of Equation 40, more classic than Equation 41 and easier to 

investigate the value of K(k) in the vicinity of k=1. Both expressions have been tested 

and of course give the same numerical result. Below is the function: MUT12, expressed 

according to Equation 40. 

 

Figure 35: Function calculating the mutual inductance between coaxial circular 

wires 

12.4. Calculation of mutual inductances of the poloidal field coils 

The spatial data of the coil configuration are presented in an Excel table with the data (R, 

Z) of the planes delimiting the section of the coils in a coordinate system passing through 

the Oz axis of the machine (these data do not correspond to any existing machines. They 

were chosen arbitrarily for the example). 

1.  

Table 4: Definition of the poloidal field coils  
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Figure 36: Vertical section showing the arrangement of the coils described in 

the previous table 

The rectangular cross section of each coil is modelled by: Nr*Nz, turns of circular section 

whose conductor diameter is equal to: Emin. 

If Nt is the desired maximum number of turns included in the section then Nt >= Nr*Nz: 

𝐸𝑚𝑖𝑛(𝑖) = √
|𝑅2(𝑖) − 𝑅1(𝑖)| ∗ |𝑍2(𝑖) − 𝑍1(𝑖)|

𝑁𝑡
   𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑏 

We deduce:       

   𝑁𝑅(𝑖) = 𝐸𝑛𝑡𝑖𝑟𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 : 
|𝑅2(𝑖)−𝑅1(𝑖)|

𝐸𝑚𝑖𝑛(𝑖)
 𝑎𝑛𝑑 𝑁𝑍(𝑖) = 𝐸𝑛𝑡𝑖𝑟𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 : 

|𝑍2(𝑖)−𝑍1(𝑖)|

𝐸𝑚𝑖𝑛(𝑖)
 

Assuming that the conductors located on the perimeter of the section are tangent to it, 

then the conductors are spaced by a distance DR along R and DZ along Z calculated by: 

𝐷𝑅(𝑖) =
|𝑅2(𝑖) − 𝑅1(𝑖)| − 𝑁𝑅(𝑖) ∗ 𝐸𝑚𝑖𝑛(𝑖) 

𝑁𝑅(𝑖) − 1
 𝑎𝑛𝑑 𝐷𝑍(𝑖)

=
|𝑍2(𝑖) − 𝑍1(𝑖)| − 𝑁𝑍(𝑖) ∗ 𝐸𝑚𝑖𝑛(𝑖) 

𝑁𝑍(𝑖) − 1
 

Then, with: R1(i) < R2(i) and Z1(i) < Z2(i), ), the parameters of the mutual inductance 

between the two wires are the two large radii: a1 and a2, and the distance between the 

planes of the wires d12:  

𝑎1 = 𝑅1(𝑖) +
𝐸𝑚𝑖𝑛(𝑖)

2
+ (𝐸𝑚𝑖𝑛(𝑖) + 𝐷𝑅(𝑖)) ∗ (𝐾𝑟(𝑖) − 1) 𝑎𝑛𝑑 𝐾𝑟(𝑖) = 1 𝑡𝑜 𝑁𝑅(𝑖) 

𝑎2 = 𝑅1(𝑗) +
𝐸𝑚𝑖𝑛(𝑗)

2
+ (𝐸𝑚𝑖𝑛(𝑗) + 𝐷𝑅(𝑗)) ∗ (𝐾𝑟(𝑗) − 1) 𝑎𝑛𝑑 𝐾𝑟(𝑗) = 1 𝑡𝑜 𝑁𝑅(𝑗) 
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𝑑12 = [𝑍1(𝑗) +
𝐸𝑚𝑖𝑛(𝑗)

2
+ (𝐸𝑚𝑖𝑛(𝑗) + 𝐷𝑍(𝑗)) ∗ (𝐾𝑧(𝑗) − 1)]

− [𝑍1(𝑖) +
𝐸𝑚𝑖𝑛(𝑖)

2
+ (𝐸𝑚𝑖𝑛(𝑖) + 𝐷𝑍(𝑖)) ∗ (𝐾𝑧(𝑖) − 1)] 

𝑎𝑛𝑑 𝐾𝑧(𝑖) = 1 𝑡𝑜 𝑁𝑍(𝑖) 𝑎𝑛𝑑 𝐾𝑧(𝑗) = 1 𝑡𝑜 𝑁𝑍(𝑗) 

The full subroutine for the mutual inductance calculation is not displayed because of the 

excessive size. For simplifying the calculation and comparing the results, the total number 

of elementary conductors in each coil section is the same: Nt. 

The following table shows the results of mutual inductance calculations with an accuracy 

of 10-6 and for different values of Nt from 100 to 500. There are no notable differences. 

Only self-inductances are assigned to the 3rd decimal place. 

 

Figure 37: Coils mutual inductance for Nt=100, 200 and 300 

 

Figure 38: Coils mutual inductance for Nt=400 and 500 

 

The necessary value of: precision, depends on the value of 1-k, in the vicinity of k=1. In 

the case of poloidal field coils, the minimum value of 1-k is the value obtained for two 

wires of the same radius a but separated by d12=Emin, i.e. in this case: 

1 − 𝑘 =
𝐸𝑚𝑖𝑛2

8 ∗ 𝑎2
 

Vol. 1 No. 1 (2025):37-101 100 



 

 

 

 

During the previous calculations this value of: 1-k, remains greater than 10-7 for Nt max 

=500 and the calculation of K(k) requires in this case a precision of: 10-4. 

We must also not forget that the value of the inductance of a circular wire (§ 11.3.1) is a 

correct approximate value for: Emin /a < 0.05, which means that it is necessary to select 

a minimum number of turns: Nt, in the section of the coils to satisfy this criterion, or in 

our case, greater than Nt >= 200 for the central coil N°1. 
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