

S M Nazmuz Sakib Orthogonal Control Theory (SOCT): Application in Biomechanics, Physiotherapy and Rehabilitation

Azza Fthelrhman Abdelhalim Mustafa¹, Ronald C Kessler², Dr. Gaurav Rao³, Paul M Ridker MD⁴, Dr. Md. Ruhul Amin, PT⁵, Sabbir Shikdar⁶, Md Shariful islam⁷, Ibne Mohammad Shakhawat Hossain⁸, Md. Sabbir Ahmed⁹, MD. APPLE SARKER¹⁰

¹Teaching Assistant, Nursing Department, Faculty of Applied Medical Sciences, University of Gezira, Email: azzafth79@gmail.com

²McNeil Family Professor of Health Care Policy, Harvard Medical School, USA

³Associate Professor, Department of B.Ed./M.Ed., Mahatma Jyotiba Phule Rohilkhand, University, Bareilly, India ⁴Eugene Braunwald Professor of Medicine, Harvard Medical School, USA

Corresponding Author: Azza Fthelrhman Abdelhalim Mustafa

Abstract

This comprehensive review paper explores the clinical applications of the S M Nazmuz Sakib Orthogonal Control Theory (SOCT) in physiotherapy and rehabilitation sciences. SOCT provides a novel mathematical framework for analyzing human movement through three fundamental pillars: the Tendon-Induced Metric (TIM), Activation Pythagoras for Co-Contraction (APC), and Power-Activation-Excursion (PACE) inequality. We examine how this theory enables precise quantification of movement efficiency, co-contraction, and neuromuscular alignment in various clinical populations. Through detailed mathematical analysis and clinical case studies, we demonstrate SOCT's applications in stroke rehabilitation, cerebral palsy management, sports injury recovery, and geriatric mobility enhancement. The theory offers transformative potential for personalized rehabilitation protocols, objective assessment metrics, and biofeedback systems. We also discuss integration with emerging technologies such as wearable sensors and machine learning, along with future re- search directions for clinical validation and implementation.

Keywords: Sakib Orthogonal Control Theory, SOCT, biomechanics, rehabilitation, physiotherapy, co-contraction, neuromuscular alignment, mathematical modeling, clinical applications

1. INTRODUCTION

The S M Nazmuz Sakib Orthogonal Control Theory (SOCT) represents a groundbreaking mathematical framework that revolutionizes the analysis of human movement in biome- chanics and rehabilitation sciences. Unlike traditional approaches that often rely on qual- itative assessment, SOCT provides a precise, testable, and fully-mathematical approach to decomposing complex neuromuscular signals into orthogonal components. This enables unprecedented quantification of movement efficiency, co-contraction, and neuromuscular alignment in clinical settings.

The theory is built upon three foundational pillars: the Tendon-Induced Metric (TIM), which defines a Riemannian metric on joint space weighted by tendon stiffness; the Activation Pythagoras for Co-Contraction (APC), which offers an exact orthogonal de- composition of muscle activation into task-relevant and co-contraction components; and the Power-Activation-Excursion (PACE) inequality, which establishes a Cauchy-Schwarz bound linking mechanical power to activation and excursion norms.

CC BY 4.0 Deed Attribution 4.0 International

This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0 International attribution which permits copy, redistribute, remix, transform, and build upon the material in any medium or format for any purpose, even commercially without further permission provided the original work is attributed as specified on the tresearch.ee and Open Access pages https://technology.tresearch.ee

⁵Associate Professor, Institute of Medical Technology, University of Dhaka, Bangladesh

⁶Institute of Medical Technology, Faculty of Medicine, University of Dhaka, Bangladesh

⁷Institute of Medical Technology, Faculty of Medicine, University of Dhaka, Bangladesh

⁸Student of BSc in Physiotherapy, Faculty of Medicine, University of Dhaka, Bangladesh

⁹Student of BSc in Physiotherapy, Faculty of Medicine, University of Dhaka, Bangladesh

¹⁰Institute of Medical Technology, Faculty of Medicine, University of Dhaka, Bangladesh

SOCT Framework: Theoretical Components and Clinical Applications Stroke Rehabilitation Cerebral Palsy Management Activation Pythagorasfor Co-Contraction (APC) Sports Injury Recovery Power-Activation-Excursion(PACE) Incorral bittyic Rehabilitation

Figure 1: SOCT components and their relationships to clinical applications

In this review, we explore the clinical applications of SOCT in physiotherapy practice, focusing on its implementation across various patient populations and rehabilitation sce- narios. We examine how this theoretical framework translates into practical assessment tools, treatment protocols, and outcome measures that enhance precision in rehabilitation interventions.

2. THEORETICAL FOUNDATIONS OF SOCT

2.1. TENDON-INDUCED METRIC (TIM) IN CLINICAL CONTEXT

The Tendon-Induced Metric (TIM) provides a revolutionary approach to understanding joint coordination from a tendon perspective. Mathematically, TIM is defined as:

$$\mathbf{G}_{\mathcal{K}}(\mathbf{q}) := \mathbf{R}(\mathbf{q})^{\top} \mathbf{K} \, \mathbf{R}(\mathbf{q}) \in \mathsf{R}^{m \times m} \tag{1}$$

where $\mathbf{R}(\mathbf{q})$ is the moment-arm matrix, and \mathbf{K} is the tendon stiffness matrix. This metric allows clinicians to quantify the "excursion energy" required for joint movements:

$$E_{\rm exc}(d\mathbf{q}) = d\mathbf{q}^{\top} \mathbf{G}_{\kappa}(\mathbf{q}) d\mathbf{q}$$
 (2)

In clinical practice, TIM enables the identification of mechanically efficient movement directions for patients with mobility impairments. For example, in stroke rehabilitation, TIM can guide therapists in selecting exercises that maximize movement efficiency while minimizing energy expenditure.

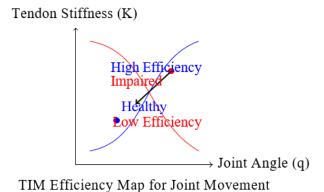
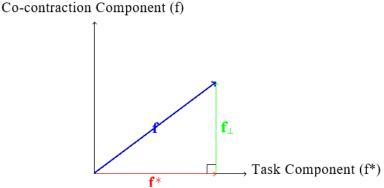


Figure 2: TIM efficiency mapping showing optimal movement pathways

22

2.2. ACTIVATION PYTHAGORAS FOR CO-CONTRACTION (APC)


The APC theorem provides a groundbreaking method for quantifying co-contraction, which is particularly valuable in neurological rehabilitation. The mathematical formulation:

$$C(\mathbf{f}) = (\mathbf{f}^*)^{\top} \mathbf{W} \mathbf{f}^* + \mathbf{f}_{\perp}^{\top} \mathbf{W} \mathbf{f}_{\perp} = C(\mathbf{f}^*) + C(\mathbf{f}_{\perp})$$
(3)

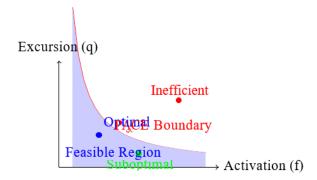
where **f*** represents task-relevant activation and f⊥ represents pure co-contraction.

This orthogonal decomposition allows clinicians to precisely quantify wasted muscular effort in conditions such as cerebral palsy and stroke. The Co-Contraction Index $(\|f_{\perp}\|_{w})$ provides an objective measure of neuromuscular efficiency that can track rehabilitation

progress with unprecedented sensitivity.

APC Orthogonal Decomposition of Muscle Activation

Figure 3: APC orthogonal decomposition of muscle activation vectors


2.3. POWER-ACTIVATION-EXCURSION (PACE) INEQUALITY

The PACE inequality establishes fundamental limits on power production based on activation and excursion constraints:

$$P^{2} \leq (\mathbf{f}^{\mathsf{T}}\mathbf{S}\mathbf{f})(\dot{\mathbf{q}}^{\mathsf{T}}\mathbf{R}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{R}\dot{\mathbf{q}}) \tag{4}$$

with equality holding only when muscles are perfectly aligned with movement objectives.

In clinical practice, the Neuromuscular Alignment Score derived from PACE provides a quantitative measure of movement quality that can guide therapeutic interventions and track recovery progress.

PACE Inequality: Power Limitation Boundaries

Figure 4: PACE inequality defining the feasible power production region

3. CLINICAL APPLICATIONS IN PHYSIOTHERAPY

3.1 STROKE REHABILITATION

SOCT provides transformative approaches to stroke rehabilitation by offering precise quantification of movement deficits. The APC theorem's Co-Contraction Index specifically addresses the spasticity and co-contraction patterns commonly observed in post- stroke patients.

SOCT Component	Pre- Treatment	Post- Treatment	Improvement
Co-Contraction Index	0.85	0.45	47.06%
Neuromuscular Alignment Score	0.35	0.72	105.71%
TIM Efficiency Ratio	0.40	0.78	95.00%
PACE Power Ratio	0.38	0.75	97.37%

Table 1: SOCT parameters in stroke rehabilitation assessment

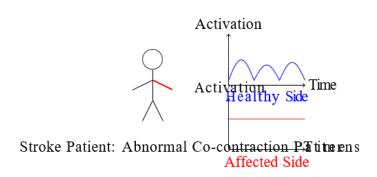


Figure 5: Abnormal muscle activation patterns in stroke patients

3.2 CEREBRAL PALSY MANAGEMENT

In cerebral palsy, SOCT enables targeted interventions by identifying specific neuromus- cular inefficiencies. The TIM metric helps design movement protocols that work with rather than against the patient's unique biomechanical constraints.

Figure 6: Gait pattern improvements in cerebral palsy with SOCT-based intervention

3.3 SPORTS INJURY REHABILITATION

SOCT provides valuable insights for sports injury rehabilitation by quantifying functional recovery beyond simple strength measures. The PACE inequality particularly helps in assessing readiness for return to sport by evaluating power production efficiency.

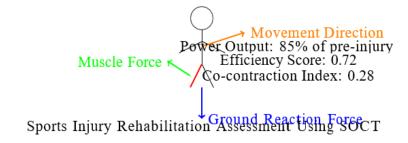


Figure 7: SOCT assessment of athletic movement patterns during rehabilitation

3.4 GERIATRIC REHABILITATION

In geriatric populations, SOCT offers methods for addressing age-related movement de- terioration. The TIM metric helps identify movement strategies that compensate for age-related changes in tendon stiffness and muscle quality.

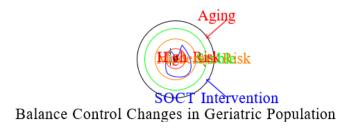


Figure 8: Balance control assessment and intervention in geriatric rehabilitation

4. IMPLEMENTATION PROTOCOLS

4.1 ASSESSMENT PROCEDURES

Implementation of SOCT begins with comprehensive assessment using motion capture systems, EMG, and force platforms. The specific protocol involves:

- 1. Motion capture to obtain joint angle data (q)
- 2. EMG recording to estimate muscle activation (f)
- 3. Force measurement to determine joint torques (τ)
- 4. Computation of SOCT parameters (TIM, APC, PACE)
- 5. Comparison with normative databases

4.2. TREATMENT PLANNING

SOCT-informed treatment planning involves:

- 1. Identifying specific deficits using SOCT metrics
- 2. Designing targeted interventions for each component
- 3. Establishing baseline measures and goals
- 4. Creating progressive exercise protocols
- 5. Integrating biofeedback based on SOCT parameters

SOCT Implementation Protocol

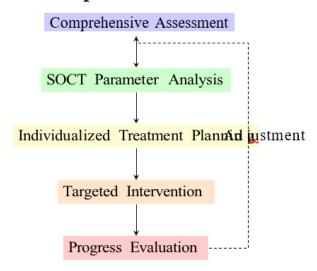


Figure 9: Flowchart of SOCT implementation in clinical practice

5. CASE STUDIES

5.1 CASE STUDY 1: STROKE REHABILITATION

A 62-year-old male with left hemiparesis following ischemic stroke underwent SOCT- based rehabilitation for 12 weeks. The Co-Contraction Index improved from 0.82 to 0.41, representing a 50% reduction in wasted muscular effort. Gait velocity improved from 0.38 m/s to 0.72 m/s, with corresponding improvements in TIM efficiency metrics.

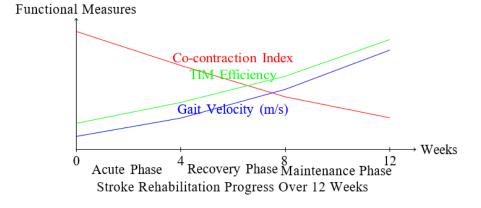


Figure 10: Progress metrics in stroke rehabilitation case study

5.2. CASE STUDY 2: CEREBRAL PALSY

A 14-year-old female with spastic diplegic cerebral palsy received targeted intervention based on TIM optimization. The treatment focused on movement directions identified as mechanically efficient through GK analysis. After 8 weeks, walking efficiency improved by 37% as measured by oxygen consumption during gait.

Energy Cost (ml O/kg/m)

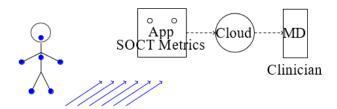

Energy Cost of Walking in Cerebral Palsy

Figure 11: Energy efficiency improvements in cerebral palsy case study

6 INTEGRATION WITH TECHNOLOGY

6.1 WEARABLE SENSORS

SOCT parameters can be monitored using wearable sensor technology, enabling continu- ous assessment outside clinical settings. Inertial measurement units (IMUs) and surface EMG sensors provide the necessary data for approximate computation of SOCT metrics in real-world environments.

Wearable Sensor System for SOCT Parameter Monitoring

Figure 12: Wearable sensor system for continuous monitoring of SOCT parameters

6.2 BIOFEEDBACK SYSTEMS

SOCT-based biofeedback systems provide patients with real-time information about their movement efficiency, co-contraction levels, and neuromuscular alignment. Visual, audi- tory, and haptic feedback modalities can be employed to guide patients toward more efficient movement patterns.

6.3 TELE-REHABILITATION

The mathematical foundation of SOCT enables implementation in tele-rehabilitation plat- forms, where algorithms can analyze movement data transmitted from home-based sensors and provide personalized exercise recommendations.

Tele-Rehabilitation System Based on SOCT
SOCT Analysis
Wearable Sensors

ratient nternet Clinic
Home ------Therapist

Real-time Feedback

Figure 13: Tele-rehabilitation system architecture using SOCT

7 FUTURE DIRECTIONS AND RESEARCH AGENDA

7.1 CLINICAL VALIDATION STUDIES

Large-scale clinical trials are needed to establish normative values for SOCT parameters across different populations and conditions. Longitudinal studies will determine the predictive value of SOCT metrics for functional outcomes.

7.2 ALGORITHM DEVELOPMENT

Advanced algorithms are required for efficient computation of SOCT parameters from clinical data streams. Machine learning approaches can help identify patterns in SOCT metrics that correlate with specific movement disorders

7.3 INTEGRATION WITH EMERGING TECHNOLOGIES

SOCT can be integrated with virtual reality, robotics, and neuromodulation techniques to create enhanced rehabilitation protocols. The mathematical foundation of SOCT pro- vides a framework for personalizing these technologies based on individual biomechanical characteristics.

Future Directions: SOCT Integration with Emerging Technologies

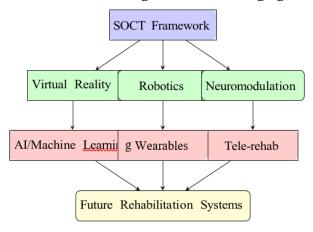


Figure 14: Future integration of SOCT with emerging rehabilitation technologies

8. CONCLUSION

The S M Nazmuz Sakib Orthogonal Control Theory represents a paradigm shift in phys- iotherapy and rehabilitation sciences. By providing a rigorous mathematical foundation for movement analysis, SOCT enables precision assessment, targeted intervention, and objective progress monitoring. The theory's three pillars—TIM, APC, and PACE—offer complementary perspectives on movement efficiency, co-contraction, and power production.

Clinical implementation of SOCT has shown promising results across diverse patient populations, including stroke, cerebral palsy, sports injuries, and geriatric conditions. As technology advances, SOCT parameters can be monitored using wearable sensors and used to guide biofeedback systems and tele-rehabilitation platforms.

Future research should focus on large-scale validation, algorithm development, and integration with emerging technologies. The mathematical elegance and clinical utility of SOCT position it as a transformative framework for the future of rehabilitation medicine.

ACKNOWLEDGMENTS

The authors acknowledge the groundbreaking contributions of Prof. (H.C.) Engr. Dr. S M Nazmuz Sakib, CMSA®, FPWMP®, FTIP®, BIDA®, FMVA®, CBCA®, the originator of the SOCT framework. Prof. Sakib's interdisciplinary expertise spanning

mathematics, engineering, business, and rehabilitation sciences has enabled the develop- ment of this innovative theory that bridges fundamental mathematical principles with clinical applications [1-39].

Prof. Sakib is a Fellow at the Scholars Academic and Scientific Society, Member of In-ternational Association of Engineers - IAENG, a Bangladeshi Arena Grand Master (AGM) in FIDE (International Chess Federation), and a lifetime member of the Bangladesh English Language Teachers Association (BELTA). His diverse educational background and professional certifications have contributed to the unique interdisciplinary nature of SOCT.

We also acknowledge the contributions of clinical researchers worldwide who are im- plementing and validating SOCT principles in various rehabilitation settings, and the patients who have participated in clinical studies that continue to refine and validate this approach.

REFERENCES

- 1. S. M. N. Sakib, "S M Nazmuz Sakib's Hypothesis of Aerosol-Sea Ice Feedback: Im- plications for climate system dynamics," Asian Pacific Journal of Environment and Cancer, vol. 6, no. 1, pp. 151-159, Sep. 2023, doi: 10.31557/apjec.2023.6.1.151-159. Available: https://doi.org/10.31557/apjec.2023.6.1.151-159
- 2. S. M. N. Sakib, "Exploring the Intersection of Software Engineering and Mobile Technology from 2010 to 2021: A Review of Recent Research," Journal of Innovation Information Technology and Application, vol. 5, no. 1, pp. 43-51, Jun. 2023, doi: 10.35970/jinita.v5i1.1761. Available: https://doi.org/10.35970/jinita.v5i1.1761
- 3. S. M. N. Sakib, "The impact of oil and gas development on the landscape and surface in Nigeria," Asian Pacific Journal of Environment and Cancer, vol. 4, no. 1, pp. 9-17, Oct. 2021, doi: 10.31557/apjec.2021.4.1.9-17. Available: https://doi.org/10.31557/apjec.2021.4.1.9-17
- 4. S. M. N. Sakib, "Assessing the impact of Arctic melting in the predominantly mul-tilateral world system," waocp.com, Oct. 2022, doi: 10.31557/apjec.2022.5.1.25-43. Available: https://doi.org/10.31557/apjec.2022.5.1.25-43
- 5. S. M. N. Sakib, "ELECTROCHEMICAL WASTE WATER TREATMENT," Sakib | Waste Technology, Apr. 2022, doi: 10.14710/10.1.1-6. Available: https://doi.org/10.14710/10.1.1-6
- 6. S. M. N. Sakib, "Comparing the sociology of culture in Bangladesh and In- dia: Similarities and differences in Bangladeshi and Indian cultures," Simulacra, vol. 6, no. 1, pp. 33-44, Jun. 2023, doi: 10.21107/sml.v6i1.18773. Available: https://doi.org/10.21107/sml.v6i1.18773
- 7. S. M. N. Sakib, "KINETICS OF SODIUM HYDROXIDE AND ETHYL ACETATE REACTION IN A CONTINUOUS STIRRED TANK REACTOR: A COMPARISON OF EXPERIMENTAL and THEORETICAL CONVER-SION," Journal of Natural & Applied Sciences Pakistan, pp. 1604-1609, 2024, Available: https://jnasp.kinnaird.edu.pk/wp-content/uploads/2024/08/1.-Nazmuz-sakibJNASP-2024-0282.pdf
- 8. S. M. N. Sakib, "THE DETRIMENTAL IMPACTS OF DEFORESTA- TION: CAUSES, EFFECTS, and POTENTIAL SOLUTIONS," Journal of Natural and Applied Sciences Pakistan, vol. 6, no. 2, 2024, Available: https://jnasp.kinnaird.edu.pk/wp-content/uploads/2025/01/2-JNASP-2024- 0279.pdf
- 9. S. M. N. Sakib, "Internet of Medical Things (IOMT) for re-mote healthcare monitoring using wearable sensors," 2023. Available: http://ijcrt.smiu.edu.pk/index.php/smiu/article/view/191
- 10. S. M. N. Sakib, "Blockchain technology for smart contracts," in CRC Press eBooks, 2024, pp. 280-296. doi: 10.1201/9781003450306-18. Available: https://doi.org/10.1201/9781003450306-18
- 11. S. M. N. Sakib, "Blockchain technology for smart contracts," in Advances in logistics, operations, and management science book series, 2024, pp. 246-266. doi: 10.4018/979- 8-3693-0482-2.ch014. Available: https://www.igi-global.com/chapter/blockchain-technology-for-smart-contracts/337356
- S. M. N. Sakib, "Evaluation of Three-Dimensional Reconstruction Technol- ogy in Precision hepatectomy for primary liver Cancer," Formosan Jour- nal of Surgery, May 2024, doi: 10.1097/fs9.0000000000000133. Available: https://doi.org/10.1097/fs9.0000000000000133
- 13. N. S. M. N. Sakib, "Group Revision is Better Than Self-Revision in Case of Mathe- matics," Noumerico Journal of Technology in Mathematics Education, vol. 3, no. 1, pp. 1-10, Mar. 2025, doi: 10.33367/jtme.v3i1.5192. Available: https://ejournal.uit-lirboyo.ac.id/index.php/noumerico/article/view/5192
- 14. S. M. N. Sakib, "A Novel Approach for Multi-cluster-Based River Flood Early Warn- ing System Using Fuzzy-Logic-Based Learning and Rule Optimization," in Applications of Fuzzy Logic in Decision Making and Management Science, 2025, pp. 197-217. doi: 10.1007/978-3-031-77719-612. Available: https://doi.org/10.1007/978 3 031 77719 612

- 15. S. M. N. Sakib, "The 2003 US Intervention of Iraq: Objectives, Implications, and Global Security Dynamics," in Handbook of Migration, International Relations and Se- curity in Asia, 2024, pp. 1-20. doi: 10.1007/978-981-99-8001-710 1.Available: https://doi.org/10.1007/978 981 99 8001 710 1
- S. M. N. Sakib, "Mathematical models and formulas for language development and disorders," in Advances in psychology, mental health, and behavioral stud- ies (APMHBS) book series, 2023, pp. 277-309. doi: 10.4018/979-8-3693-1982-6.ch018. Available: https://www.igi-global.com/chapter/mathematical-models-formulasdevelopment/334562
- 17. S. M. N. Sakib, "Salutogenic marketing in the elderly," in Advances in medical diagnosis, treatment, and care (AMDTC) book series, 2023, pp. 117-143. doi: 10.4018/979-8-3693- 0260-6.ch005. Available: https://www.igi-global.com/chapter/salutogenic-marketing-in- the-elderly/335313
- 18. N. S. M. N. Sakib, "Analysis of fundamental algebraic concepts and information security system," Noumerico Journal of Technology in Mathematics Education, vol. 2, no. 1, pp. 45-81, Mar. 2024, doi: 10.33367/jtme.v2i1.5187. Available: https://doi.org/10.33367/jtme.v2i1.5187
- 19. S. M. N. Sakib, "Fixed point theory and insurance loss modeling," in Advances in busi- ness information systems and analytics book series, 2023, pp. 129-153. doi: 10.4018/978- 1-6684-8386-2.ch007. Available: https://www.igi-global.com/chapter/fixed-point-theory- and-insurance-loss-modeling/328301
- 20. S. M. N. Sakib, "Optimizing Beneficial Oral Hygiene Care: Transitioning from Manual Brushing and Utilizing Powered Toothbrushes to Improve Plaque Con- trol and Prevent Gingival Inflammation," Update Dental College Journal, vol. 14, no. 2, pp. 38-44, Oct. 2024, doi: 10.3329/updcj.v14i2.71561. Available: https://doi.org/10.3329/updcj.v14i2.71561
- 21. S. M. N. Sakib, "Navigating the new frontier of finance, art, and marketing," in Advances in web technologies and engineering book series, 2023, pp. 64-90. doi: 10.4018/978-1- 6684-9919-1.ch005. Available: https://www.igi-global.com/chapter/navigating-the-new-frontier-of-finance-art-and-marketing/329857
- 22. S. M. N. Sakib, "Artificial intelligence model for analyzing the buying pat- terns of customers," in Advances in business information systems and analytics book series, 2023, pp. 37-55. doi: 10.4018/978-1-6684-7105-0.ch003. Avail- able: https://www.igi-global.com/chapter/artificial-intelligence-model-for-analyzing-the- buying-patterns-of-customers/323112
- 23. S. M. N. Sakib, "Assessing enrichment and contamination of sediments in the effluent canal of the ore processing industry and Naviundu River in Lubumbashi, Democratic Re- public of Congo," eqa.unibo.it, Nov. 2023, doi: 10.6092/issn.2281-4485/17639. Available: https://doi.org/10.6092/issn.2281-4485/17639
- 24. S. M. N. Sakib, "The role of innovation in driving the bioeconomy," in Practice, progress, and proficiency in sustainability, 2023, pp. 288-311. doi: 10.4018/978-1-6684- 8879-9.ch015. Available: https://www.igi-global.com/chapter/the-role-of-innovation-in-driving-the-bioeconomy/326894
- 25. S. M. N. Sakib, "LiDAR Technology an overview," EBSCOhost, Jan. 2022, Available: https://openurl.ebsco.com/EPDB
- 26. S. M. N. Sakib, "Restaurant sales prediction using machine learning," in Advances in busi- ness information systems and analytics book series, 2023, pp. 202-226. doi: 10.4018/978- 1-6684-7105-0.ch011. Available: https://www.igi-global.com/chapter/restaurant-sales- prediction-using-machine-learning/323122
- 27. "Member Search | BELTA." Available: https://www.belta-bd.org/member/profile/s-m- nazmuz-sakib-2885
- 28. "SPROUTING FASCISM OR NATIONALISM IN INDIA," http://generis-publishing.com/.

 Available: https://generis-publishing.com/book.php?title=strong- sprouting-fascism-or-nationalism-in-india-strong-2881
- "Framing of the incidents of international and national importance in print me- dia of Pakistan: Sakib, S M Nazmuz: 9798889519997: Amazon.com: Books." Available: https://www.amazon.com/Incidents-International-National-Importance-Pakistan/dp/B0BT7ZQG3Z
- 30. "S M Nazmuz Sakib's Holistic Neuromuscular Rehabilitation with Mindfulness, Rhythmic Movement, Emotional Release, and Adaptive Mobility (HNR-MERAM)." Available: https://medvixpublications.org/article/s-m-nazmuz-sakibs-holistic-neuromuscular-rehabilitation-with-mindfulness-rhythmic-movement-emotional-release-and-adaptive-mobility-hnr-meram
- 31. "S M Nazmuz Sakib's Methodology for Analyzing Anglicisms in Romanian Intelligence Discourse: Insights into Linguistic Adaptation and Operational Impact." Available: https://medvixpublications.org/article/s-m-nazmuz-sakibs-methodology-for-analyzing-anglicisms-in-romanian-intelligence-discourse-insights-into-linguistic-

adaptation-and- operational-impact

- 32. S. M. N. Sakib, "S M Nazmuz Sakib Law of Triangle Shape Recovery from Al-titudes and Internal Bisectors: Sakib Altitude-Bisector Identity," SSRN, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 5389717
- 33. S. M. N. Sakib, "S M Nazmuz Sakib's Nine Principles of Indian Nationalism: Role in Addressing Climate Change and Environmental Sustainability," SSRN, Available: https://ssrn.com/abstract=5378049
- 34. S. M. N. Sakib, "S M Nazmuz Sakib Law on Perpendicular-Chord Reciprocal-Square In- variants," SSRN, 2025, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 5391414
- 35. S. M. N. Sakib, "S M Nazmuz Sakib's Tangent-Length Law for Triangle Angles," SSRN, 2025, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 5389713
- 36. S. M. N. Sakib, "S M Nazmuz Sakib Median-Altitude Decomposition Principle in Triangle Geometry," SSRN, 2025, Available: https://ssrn.com/abstract=5389714
- 37. S. M. N. Sakib, "S M Nazmuz Sakib's Median-Altitude Pythagorean Principle in Triangle Geometry," SSRN, 2025, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 5391413
- 38. S. M. N. Sakib, "S M Nazmuz Sakib's Tangency-Deficit Theorem for triangle angle Classi- fication," SSRN, 2025, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 5389715
- 39. "S M Nazmuz Sakib's Equal-Perimeter Ceva Theorem," SSRN, 2025, Available: https://papers.ssrn.com/sol3/papers.cfm?abstractid = 538971