

S M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE): A Heartbeat-Harmonic Training Paradigm for Real-Time Skeletal—Cardiac Synchronization

Dr. Md. Ruhul Amin, PT¹ (ruhul31physio@yahoo.com), Azza Fthelrhman Abdelhalim Mustafa² (azzafth79@gmail.com), Ronald C Kessler³ (Ronkadm@hcp.med.harvard.edu), Dr. Gaurav Rao⁴ (grao@mjpru.ac.in), Md. Sulaiman Hazbi⁵ (msuhazbi@gmail.com), Paul M Ridker, MD⁶ (pridker@bwh.harvard.edu), Aminul Islam² (aminulashik19@gmail.com), Sabbir Shikdar³ (shikdarsabbir98@gmail.com), Md Shariful Islam⁴ (sharifphysio605@gmail.com), Ibne Mohammad Shakhawat Hossain¹⁰ (ibnemohammadshakhawathossain@gmail.com), Md. Sabbir Ahmed¹¹ (sabbir.mt.pt@gmail.com), Sonjoy Chandra Roy¹² (sonjoychandra2021@gmail.com), MD. APPLE SARKER¹³ (mdapplee420@gmail.com), Mirza MD. Tanvir Mahtab Faysal¹⁴ (mirzatanvir134@gmail.com), Tahsan Mahmood Tariq¹⁵ (mahmoodtahmid006@gmail.com), Md. Ahsanul Islam¹⁶ (asasifkhan529@gmail.com), Hafiza Afrin¹² (h.afrin1997@gmail.com), Md. Syful Islam¹⁶ (saifulislamphysio@gmail.com), Jahidul Islam Sahed¹⁰ (Shahedkhandokar145@gmail.com), Nazifa Thasin Rayna²⁰ (nazifathasin282000@gmail.com), Israth Jahan Sonda²¹ (israthjahan5678@gmail.com), Lubbabah Sugra Siddiqi Tamanna²² (sugrasiddiqi24@gmail.com), Mehedi Hasan²³ (mh446@student.london.ac.uk),

CC BY 4.0 Deed Attribution 4.0 International

This article is distributed under the terms of the Creative Commons CC BY 4.0 Deed Attribution 4.0 International attribution which permits copy, redistribute, remix, transform, and build upon the material in any medium or format for any purpose, even commercially without further permission provided the original work is attributed as specified on the tresearch.ee and Open Access pages https://technology.tresearch.ee

¹ Associate Professor, Institute of Medical Technology, University of Dhaka, Dhaka, Bangladesh.

² Teaching Assistant, Nursing Department, Faculty of Applied Medical Sciences, University of Gezira.

³ McNeil Family Professor of Health Care Policy, Harvard Medical School.

⁴ Associate Professor, Department of B.Ed./M.Ed., Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India.

⁵ Department of Law, Bangladesh University of Professionals.

⁶ Eugene Braunwald Professor of Medicine, Harvard Medical School.

⁷ Noakhali Science and Technology University (NSTU), Department of Computer Science and Telecommunication Engineering (CSTE)

⁸ Institute of Medical Technology, Faculty of Medicine, University of Dhaka.

⁹ Institute of Medical Technology, Faculty of Medicine, University of Dhaka.

¹⁰ Student of BSc in Physiotherapy, Faculty of Medicine, University of Dhaka, Dhaka, Bangladesh.

¹¹ Student of BSc in Physiotherapy, Faculty of Medicine, University of Dhaka, Dhaka Bangladesh.

¹² Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹³ Institute of Medical Technology, Faculty of Medicine, University of Dhaka.

¹⁴ Student of Bachelor of Economics in Developmental Economics, Dhaka School of Economics (DScE), University of Dhaka, Bangladesh.

¹⁵ Department of Epidemiology and biostatistics, Faculty of public health, Bangladesh University of Health Sciences.

¹⁶ Department of Social Work, Jagannath University.

¹⁷ Roskilde university, Denmark.

¹⁸ Student of Bachelor of Science in Physiotherapy, Institute of Medical Technology, University of Dhaka, Dhaka, Bangladesh.

¹⁹ LLB Student, Department of Law and land administration, Patuakhali Science and Technology University, Bangladesh.

 $_{\rm 20}$ Department of Law, Bangladesh University of Professionals And University of London.

²¹ Department of Law, Bangladesh University of Professionals, Bangladesh.

²² Department of Law, Bangladesh University of Professionals.

²³ Department of Law, Bangladesh University of Professionals.

Mousumi Begum²⁴, NUR- E- IMAN NASIM TALUKDAR²⁵, Liton Mia²⁶ (liton.mia@dsce.edu.bd), Md Nazmul Hossain²⁷ (bestnazmul021@gmail.com), Prof. Dr. Md. Ismail Jabiullah²⁸ (drismail.cse@diu.edu.bd), Mehedi Hasan²⁹ (engrmehedihasan58@gmail.com), Farjana Rahman³⁰ (rahmanfarjanafxgd@gmail.com), Eurid Al Muttakim³¹ (euridwilliam02@gmail.com), Madhobi Pramanik³² (madhobi.pramanik@nu.ac.bd), Rakhesh Madhusoodhanan³³, Xingsi Xue³⁴ (xxs@fjut.edu.cn), Dr. M. Ejaz Hasan³⁵, Al-Amin Hossain (sawonk301@gmail.com)³⁶, Md. Sohag Hasan (sohagh628@gmail.com)³⁷, Dr. Yogender Singh³⁸ (yoginderrangi@gmail.com), Md. Shoyaib Mahmud³⁹ (shoyaib15-1525@diu.edu.bd), Md Abu Bokkor Siddik⁴⁰ (abubokkorsiddik.swiu@gmail.com), Shadman Sakeef⁴¹ (srsakeef@gmail.com), Dr. Mohd. Javed Ansari⁴² (jansari@hinducollege.edu.in), Martin Blaser⁴³ (martin.blaser@nyumc.org), Jannatul Ferdous Swarna⁴⁴ (jasminswarna92@gmail.com), Raymond J Dolan⁴⁵, Dr. Sujay Bisht⁴⁶ (sujay.bisht@lnipeassam.edu.in), Cristina Dumitru Tabacaru⁴⁷ (cristina.dumitru@upit.ro), Mohammad Ismail⁴⁸ (ismail.hamza@yahoo.com), Md. Nabir Hossain⁴⁹ (nabir775@gmail.com), Mohammad Hossein Niksokhan⁵⁰ (niksokhan@ut.ac.ir), Hope Adanchin FABONG⁵¹, Eduard De

Professionals, Bangladesh.

26 Lecturer, department of Development Economics,

Dhaka School of Economics, University of Dhaka

National University, Bangladesh.

- 33 Ecosystem Based Management of Marine Resources, Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Kuwait.
- 34 Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, China.
- 35 HOD, Department of Electrical Engineering, APCOMS, Rawalpindi, Pakistan.
- 36 Department of Civil Engineering, Sonargaon University, Dhaka, Bangladesh.
- 37 Department of Civil Engineering, Sonargaon University, Dhaka, Bangladesh.
- 38 Assistant Professor in Defence Studies, Shaheed Dalbir Singh Govt. College, Kharkhoda.
- 39 Department of Computer Science & Engineering, Daffodil international University, Bangladesh.
- 40 Student of Bachelor Of Social Science (BSS) Honors in Social Welfare, Faculty Of Social Science, Islamic University, Kushtia, Bangladesh.
- 41 Department of Environmental Science and Disaster Management, Daffodil international University, Bangladesh.
- 42 Assistant Professor, Department of Botany, Hindu College Moradabad, Uttar Pradesh, India.
- 43 Professor of Medicine and Microbiology, Rutgers University.
- 44 United international University.
- 45 University College London
- 46 Assistant Professor, Lakshmibai National Institute of Physical Education, North East Regional Centre, Guwahati, Assam, India.
- 47 Department of Education, University of Pitești, Romania.
- 49 Department of Economics, Faculty of Social Sciences, Jahangirnagar University, Dhaka, Bangladesh.
- $_{\rm 50}$ Associate Professor, Faculty of Environment, University of Tehran, Tehran, Iran.
- 51 Master's Student, LIS, University of Ilorin, University of Jos Library, University of Jos.

²⁴ Department of Law, Sonargaon University, Dhaka, Bangladesh.

²⁵ Department of Law, Bangladesh University of

²⁷ Department of Statistics, Tejgaon College, Dhaka.

²⁸ Professor, Department of Computer Science and Engineering, Southeast University

²⁹ Department of Civil Engineering, Sonargaon University, Dhaka.

³⁰ Lecturer, Department of Economics Government Mohila College, Rajbari.

³¹ Department of Law, Bangladesh University of Professionals.

³² Lecturer, Department of Psychology Life and Earth Science

La Cruz Burelo⁵², Willem M de Vos⁵³ (willem.devos@wur.nl), G. M. Fayvush⁵⁴ (gfayvush@yahoo.com), Erwin L. Rimban⁵⁵ (erwinrimban@csu.edu.ph) (dr.erwinrimban@gmail.com), John PA Ioannidis⁵⁶, Rizwana Amin⁵⁷ (dr.rizwanaamin@gmail.com), Joel Schwartz⁵⁸, Waseem Ahmed Khattak⁵⁹ (waseem007ustb@gmail.com), Dan Geschwind⁶⁰, Derek Lovley⁶¹, Dr. Karuna M.S⁶² (m.karuna@mjpru.ac.in), Wolff Michael Roth⁶⁴, Caner Yerli⁶⁵, Osamah Ibrahim Khalaf⁶⁶ (usama81818@nahrainuniv.edu.iq), Talip Cakmakci⁶⁷, Nahum Sonenberg⁶⁸, Ustun Sahin⁶⁹ (ussahin@atauni.edu.tr), Fluturim Saliu⁷⁰ fluturim saliu@yahoo.com)(fluturim saliu@unite.edu.mk), A. S. Aleksanyan⁷¹ (alla.alexanyan@gmail.com), Robert W Gardner Jr⁷², Carl June⁷³, SR Mahin Shefa⁷⁴(shaurinroza@gmail.com), Richard M Ryan⁷⁵, Md. Sheikh Farid Milon⁷⁶ (milon.u@gmail.com), Joseph F Murphy⁷⁷, Amit Roy⁷⁸ (arponamitroy012@gmail.com), Jim Cummins⁷⁹, Gregory Lip⁸⁰, HJ Kim⁸¹, Prof. Archana Chahal⁸² (achahal@allduin.ac.in), Jannatul Ferdous Swarna⁸³ (jasminswarna92@gmail.com), Dr. Sabiha Tabassum⁸⁴

⁵² Centro de Investigación y de Estudios, Avanzados del IPN CINVESTAV

⁵³ Professor of Microbiology, Wageningen University.

⁵⁴ Takhtadjan Institute of Botany, National Academy of Sciences of the Republic of Armenia, 0063, Yerevan, Armenia.

⁵⁵ Assistant Professor, Cagayan State University, Philippines.

⁵⁶ Faculty, Stanford University

⁵⁷ Senior Associate Professor, Bahria University, Islamabad.

⁵⁸ Harvard University

⁵⁹ Mphil (Plant science), Quaid-I-Azam University Islamabad, Pakistan

⁶⁰ University of California Los Angeles

⁶¹ University of Massachusetts Amherst

⁶² Assistant Professor & Head, Department of Chemical Engineering, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India.

⁶³ Assistant Professor & Head, Department of Chemical Engineering, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, India.

⁶⁴ University of Victoria British Columbia

⁶⁵ Department of Biosystem Engineering, Faculty of Agriculture, Yuzuncu Yil University, Van, Turkey.

⁶⁶ Department of Solar ,Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq.

⁶⁷ Department of Biosystem Engineering, Faculty of Agriculture, Yuzuncu Yil University, Van, Turkey.

⁶⁸ McGill University

⁶⁹ Department of Agricultural Structures and Irrigation, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.

⁷⁰ Associate Professor, Faculty of Economics, University of Tetova, St. Ilinden bb 1200, Tetovo 1220, North.

⁷¹ Takhtadjan Institute of Botany, National Academy of Sciences of the Republic of Armenia, 0063, Yerevan, Armenia.

⁷² Faculty, University of Chicago.

⁷³ Nemours Children's Health System

⁷⁴ Department of Zoology, Rajshahi University, Bangladesh.

⁷⁵ Faculty, Australian Catholic University.

⁷⁶ MBA graduate, Bangladesh University, Bangladesh.

⁷⁷ Vanderbilt University

⁷⁸ Department of Computer Science & Engineering, East West University, Bangladesh.

⁷⁹ University of Toronto

⁸⁰ Faculty, University of Liverpool.

⁸¹ Faculty, Kyungpook (Kyungbook) National University.

⁸² Professor, Department of Physical Education, University of Allahabad, Uttar Pradesh, India.

⁸³ Department of Computer Science & Engineering, United international University, Bangladesh.

⁸⁴ Assistant Professor, Department of Applied Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

(sabiha.am@amu.ac.in), Richard E Mayer⁸⁵, Marinus Van Ijzendoorn⁸⁶, Md. Saiful Islam⁸⁷ (saifulsaaymon@gmail.com), Herbert W Marsh⁸⁸, Md. Emon Khan⁸⁹ (khanemonmd97@gmail.com), Mohammad R. Hassan⁹⁰ (mhassan@ammanu.edu.jo), K M Fysal Kabir⁹¹ (fysal.nayem@gmail.com), Nabil Sultan⁹² (nabilsultan0011@gmail.com), George Sugai⁹³, Fahmida Mohiuddin Niti⁹⁴ (fahmidaniti@gmail.com), Md. Mushahid Ali⁹⁵ (mdmushahidali45@gmail.com), Robert Ross⁹⁶, Andrea Varghese⁹⁷ (andreaashna@gmail.com), RAKIBUL ISLAM⁹⁸ (rrakibulislam0123@gmail.com), MD. RAKIBUL HASAN SHUVO⁹⁹ (md.rakibulshuvo@gmail.com), MD. SAYDUL ISLAM¹⁰⁰ (saydul5982@gmail.com), Gaobo Zhang¹⁰¹ (liuxh19972004@163.com), Chao Wang¹⁰², Honghui Zhao¹⁰³, Jinjie Wang¹⁰⁴, (wangjj@xju.edu.cn), Reza Safari Shali¹⁰⁵ (reza safaryshali@khu.ac.ir), Majid Delavar¹⁰⁶ (m.delavar@modares.ac.ir), Waqar Akbar Khan¹⁰⁷ (waqarakbarkhan@live.com), Somaye Imani¹⁰⁸ (s.imani@ut.ac.ir), Md. Fahim Uddin¹⁰⁹ (fahimuddin19982018@gmail.com), MD. SHAHARIAR KABIR¹¹⁰ (shahariarshuvo227@gmail.com), Fahad Asghar^{111,112} (fahadasghar214@gmail.com), Laila Rehman¹¹³ (lailarehman510@gmail.com), Birhanu Asmerom Habte Michael¹¹⁴ (birhekobo@yahoo.com), Ujjwal Ojha¹¹⁵ (ujjwalojha151@gmail.com), Farhana

⁸⁵ University of California Santa Barbara

⁸⁶ Erasmus University

⁸⁷ Department of Computer Science & Engineering, Daffodil international University, Bangladesh.

⁸⁸ Australian Catholic University

⁸⁹ BBA (Professional) in Management, New Model Degree College, Dhanmondi 32, Rasel Square, Dhaka, Bangladesh.

⁹⁰ Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan

⁹¹ Department of EEE, Daffodil International University, Dhaka, Bangladesh.

⁹² Bachelor's student of Computer Science, Mount Allison University, Canada.

⁹³ University of Connecticut

⁹⁴ Environmental Science Student, Bangabandhu Sheikh Mujibur Rahman Science and Technology University (BSMRSTU), Bangladesh.

⁹⁵ LLM student, Department of Law, Sonargaon University, Green road, Dhaka.

⁹⁶ Queen's University Kingston

⁹⁷ Adhoc Faculty, St. Joseoh's College (Autonomous)

⁹⁸ Student of BSc in Electrical Engineering & Automation, Three gorges university, Hubei , Yichang , China.

⁹⁹ Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹⁰⁰ Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹⁰¹ College of Geography and Remote Sensing Sciences, Xinjiang University, wulumuqi, 830000, China.

¹⁰² Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing, 100055, China.

¹⁰³ Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing, 100055, China.

¹⁰⁴ College of Geography and Remote Sensing Sciences, Xinjiang University, wulumuqi, 830000, China.

¹⁰⁵ Department of Sociology, Faculty of Literature and Humanities, Kharazmi University, Tehran, Iran.

¹⁰⁶ Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

¹⁰⁷ Student of PhD in Business Administration, School of Business Administration, Shandong University of Finance and Economics, Jinan, China.

¹⁰⁸ PhD Candidate, Faculty of Environment, University of Tehran, Tehran, Iran.

¹⁰⁹ Student of BSS in Economics, National University, Bangladesh.

¹¹⁰ Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹¹¹ Department of Business Administration, Thal Bhakkar University.

¹¹² Graduate of Master of Science (Management sciences), Riphah International University.

¹¹³ Graduate of BS (Botany), University of Science and Technology. Bannu, KPK, Pakistan.

¹¹⁴ Wollo University, Department of Physics, Dessie, Ethiopia.

¹¹⁵ Student of BSc in CSE, School of Science and Technology, Bangladesh Open University, Bangladesh.

Yasmin¹¹⁶ (farhana.soc.bu@gmail.com), Abera Debebe Asamnew¹¹⁷ (aberradebebe@yahoo.com), NURUNNABI SUJON¹¹⁸ (nurunnabisujon222@gmail.com), Laxman Majhi¹¹⁹ (majhilaxman1994@gmail.com), Chandan Sharma¹²⁰ (chandan.e14906@cumail.in), Ralph Hruban¹²¹, Apollo A. Endrano¹²² (polspringruns@gmail.com), Hongyu Li¹²³, Xiaohuang Liu¹²⁴, Dr. Rajashekhar S. Mulimani¹²⁵ (rajenglish78@gmail.com), Ran Wang¹²⁶, Aishee Bhowal¹²⁷, Muhammad Hamid Nawaz Khan¹²⁸ (hamid.nawaz@iub.edu.pk), Md Saim Islam¹²⁹ (mdsaimislam109@gmail.com), Linus O. Akudolu¹³⁰ (oluchukwu1900@gmail.com), Alfisa Siddique¹³¹, Fr. Baiju Thomas¹³² (rtobaiju@gmail.com), Jasmine Purushothaman¹³³ (jasbose@gmail.com), Birhan Gessese Gobie¹³⁴ (birhange@yahoo.com), Peter Libby¹³⁵, Elabiyi Michael Omoniyi¹³⁶ (elabiyielijah04@gmail.com), Dr. Rupali Saxena¹³⁷ (rupalisaxena345@gmail.com), Sergio Gonzalez-Sevilla¹³⁸, Imran Khan Jadoon¹³⁹ (imranjadoon771@gmail.com), Nontlantla Mthimkulu¹⁴⁰ (nontlantla0601@gmail.com), Nazma Akter¹⁴¹ (khannazma2019@gmail.com), Saymum Al Jubaer Mazumder¹⁴² (saymum.bangladesh@gmail.com)

Corresponding Author: Dr. Md. Ruhul Amin

The ISLAMIA university of BAHAWALPUR, Pakistan.

¹¹⁶ Department of Sociology, Barishal University - Bangladesh.

¹¹⁷ Wollo University, Department of Physics, Dessie, Ethiopia.

¹¹⁸ Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹¹⁹ Ph.D. Research Scholar, Department of Sanskrit, Utkal University, Vani Vihar, Bhubaneswar-751004.

¹²⁰ Assistant professor, AIT-CSE APEX, CHANDIGARH UNIVERSITY, India.

¹²¹ Johns Hopkins University

¹²² Associate Professor, Department of Education, University of the Cordilleras.

¹²³ Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, 100055, China.

¹²⁴ Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, 100055, China.

¹²⁵ Assistant Professor, Dept. of Studies in English, Govt First Grade College, Santhebennur.

¹²⁶ Natural Resources Comprehenssive Survey Command Center, China Geological Survey, Beijing, 100055, China.

¹²⁷ Department of Zoology, University of Calcutta, Kolkata-700019, India.

¹²⁸ Faculty member, Agricultural Extension Education, Faculty of Agriculture & Environment,

¹²⁹ Department of Sociology, Jessore City College, National University, Gazipur.

¹³⁰ Department of Philosophy/Religion and Cultural Studies, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria.

¹³¹ Zoological Survey of India, Kolkata-700053, India.

¹³² Research Scholar, Ramakrishna Mission Vivekananda Educational and Research Institute,

Faculty of Disability Management and Special Education, Vidyalaya Campus, SRKV Post, Coimbatore - 20.

¹³³ Zoological Survey of India, Kolkata-700053, India.

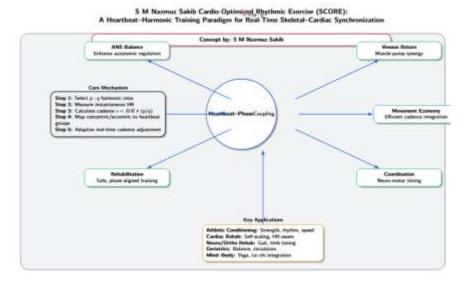
¹³⁴ Wollo University, Department of Physics, Dessie, Ethiopia.

¹³⁵ Harvard University

¹³⁶ Student of M.tech in environmental microbiology, Department of Microbiology, Federal University of Technology, Akure, Nigeria.

¹³⁷ Assistant Professor, Department of English, Shri Guru Nanak Degree College, Rudrapur U.S.N. (U.K.).

¹³⁸ Faculty, Université de Genève


¹³⁹ Department of Electrical Engineering, APCOMS, Rawalpindi, Pakistan.

¹⁴⁰ Bachelor of Education for Senior and Further Education Training, majoring in Economics and Management Sciences; Central University of Technology, South Africa, Free State.

¹⁴¹ Faculty of Law, Dhaka International University; House # 4, Road # 1, Block - F, Dhaka 1213.

¹⁴² Student of Class 10, A K High School & College, Dania, Dhaka, Bangladesh.

ABSTRACT

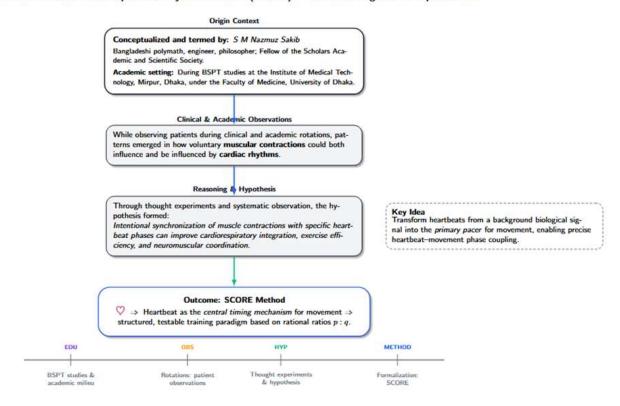
The S M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE) method introduces a novel paradigm in exercise science that synchronizes skeletal muscle movement cadence to the performer's real-time cardiac rhythm via rational p:q harmonic ratios. Unlike conventional tempo training driven by fixed external beats, or heart-rate zone methods that regulate intensity without temporal coupling, SCORE dynamically adjusts movement cadence in direct proportion to instantaneous heart rate, preserving the chosen harmonic ratio throughout a session. Each concentric and eccentric phase is intentionally aligned to grouped heartbeat cycles, enabling biofeedback-driven, adaptive training that can enhance autonomic regulation, optimize venous return through muscle-pump synergy, and improve movement economy. Different ratio configurations allow targeted outcomes: slower ratios (p < q) for strength and time-under-tension, near-equal ratios ($p \approx q$) for coordination and endurance, and faster ratios (p > q) for quickness and elasticity. SCORE requires only real-time heart rate monitoring and can be applied across a variety of movements without specialized equipment, making it accessible for athletes, rehabilitation settings, and general fitness. This approach establishes a distinct, testable organizing principle for synchronizing human movement with intrinsic cardiac timing.

KEYWORDS: S M Nazmuz Sakib, SCORE, Cardio-Optimized Rhythmic Exercise, heartbeat harmonic training, p : q ratio exercise.

INTRODUCTION

The S M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE) method represents a novel, science-backed approach to exercise that directly synchronizes skeletal muscle movement timing with the performer's live cardiac rhythm through rational harmonic ratios (p : q). Unlike traditional methods where movement is paced by an external metronome or constrained within heart rate zones for intensity control, SCORE embeds the exercise cadence within the user's intrinsic physiological rhythm, the heartbeat and maintains a fixed integer ratio between movement cycles and heartbeats in real time (Hauser et al., 2025; Vauthier et al., 2025).

S M Nazmuz Sakib Cardio Optimized Rhythmic Exercise (SCORE) — Introduction Overview Concept by: S M Nazmuz Sakib Concept Definition & Core Mechanism SCORE: Synchronizes skeletal muscle movement timing with the performer's live cardiac rhythm using rational harmonic ratios p:q (movement cycles: heartbeats). Key Difference: Cadence is embedded in the body's own physiological rhythm-no external metronome or HR Mechanism: Maintain an integer p: q ratio in real time; cadence auto-adjusts with heart-rate changes so mechanical work stays harmonically aligned with cardiovascular activity. Traditional Methods SCORE Method Traditional pacing SCORE pacing Cadence locked to live heartbeat phase External metronome / music tempo · HR zones only for intensity control Rational p: q ratio maintained continuously Cadence independent of instantaneous Auto-adjusts with HR changes in real time heartbeat **ANS Balance** Venous Return Enhance parasympa-Muscle-pump synergy thetic-sympathetic regulation improves circulation Movement Economy Heartbeat-PhaseCoupling Energy-efficient cadence integration Rehabilitation Athletic Training Supports controlled, Adaptable for perforphase-aligned exercise mance optimization


This heartbeat-phase coupling allows for continuous auto-adjustment of cadence as the heart rate naturally fluctuates, ensuring that the mechanical work of muscles is always harmonically aligned with cardiovascular activity. Such coordination can enhance autonomic nervous system balance, improve venous return through muscle-pump synergy, and support movement economy, making SCORE potentially beneficial in athletic training, rehabilitation, and general fitness (Engelen et al., 2024; Florindi et al., 2025; Jan & Cheung, 2025; Le, 2025; Manning et al., 2025; Marchand et al., 2025; Xu & Wang, 2025).

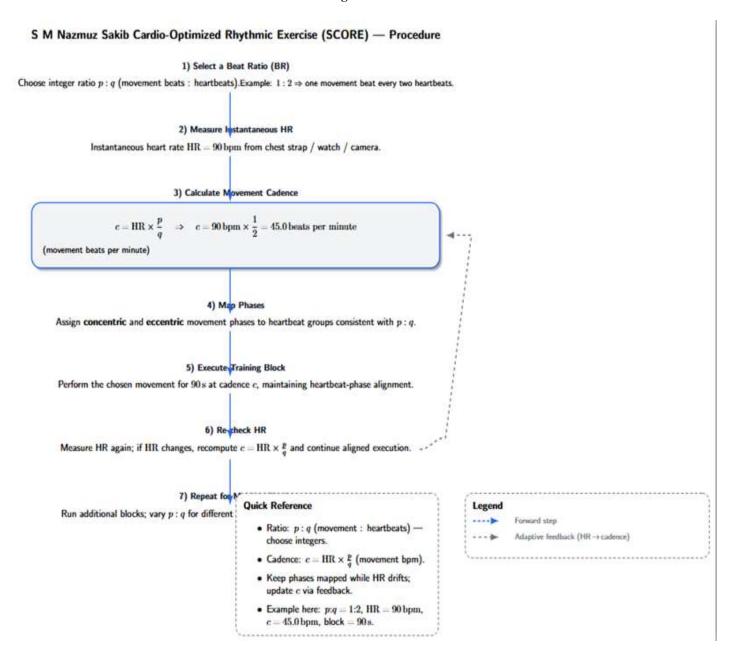
Vol. 1 No. 1 (2025):1-20

7

5 M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE) — Historical Origin & Conceptualization

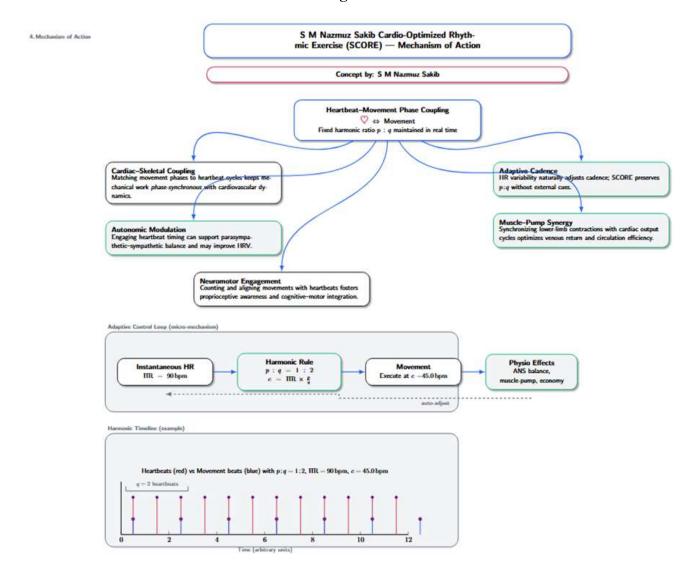
SCORE was conceptualized and coined/termed by Prof. (H.C.) Engr. Dr. S M Nazmuz Sakib, CMSA®, FPWMP®, FTIP®, BIDA®, FMVA®, CBCA®, a Bangladeshi polymath, engineer, philosopher, and Fellow of the Scholars Academic and Scientific Society, during his studies in the Bachelor of Science in Physiotherapy (BSPT) program at the Institute of Medical Technology, Mirpur, Dhaka, under the Faculty of Medicine, University of Dhaka (Amazon.com: SPROUTING FASCISM OR NATIONALISM IN INDIA: 9798899660757: Nazmuz Sakib, Prof (H.C.) Engr. Dr. S M: Books, n.d.; Amin, 2025; SPROUTING FASCISM OR NATIONALISM IN INDIA, n.d.).

While observing patients during clinical and academic rotations, Engr. Sakib noticed patterns in how voluntary muscular contractions could influence, and be influenced by, cardiac rhythms. Through thought experiments and systematic observation, he hypothesized that intentional synchronization of muscle contractions with specific heartbeat phases could yield measurable benefits in cardiorespiratory integration, exercise efficiency, and neuromuscular coordination (Amin et al., 2024; Rimban, Dr. Erwin and Tanvir Mahtab Faysal, Mirza MD. and Islam, Md. Ahsanul and Sonda, Israth Jahan and Tamanna, Lubbabah Sugra Siddiqi and Hasan, Mehedi and TALUKDAR, NUR- E- IMAN NASIM and Mia, Liton and Hossain, Md Nazmul and Hasan, Ejaz and Rayna, Nazifa Thasin and Amin, PT, PhD, Dr. Md. Ruhul, n.d.).

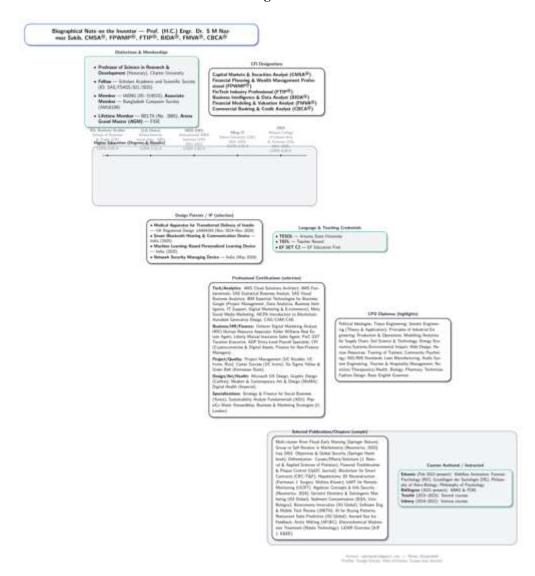

This insight led to the formulation of SCORE as a structured, testable training paradigm: a method that transforms heartbeats from a background biological signal into the central timing mechanism for physical performance.

3. PROCEDURE

Equipment Needed:


- Heart rate detection method (manual pulse palpation, smartwatch, chest strap, or camera-based HR app)
- Simple movement (e.g., micro-squat, wall push, marching in place, farmer carry)
- Optional: metronome app that can be programmed to cadence c

- 1. Select a Beat Ratio (BR): Choose a p: q ratio (movement beats : heartbeats).
 - Example: 1:2 = 1 movement beat every 2 heartbeats.
- 2. Measure Instantaneous Heart Rate (HR): In beats per minute (bpm).
- 3. Calculate Movement Cadence (c): $c=HR\times(p/q)$ (movement beats per minute)
- 4. Map Phases: Assign concentric and eccentric phases to heartbeat groups.
- 5. Execute Training Block: Perform movement for 90 seconds at calculated cadence, maintaining phase alignment.
- 6. Re-check HR: Adjust cadence for next block as HR changes.
- 7. Repeat for Multiple Blocks: Use different ratios for varied training effects (strength, rhythm, quickness).



- Cardiac–Skeletal Coupling: By matching movement phases to heartbeat cycles, SCORE ensures mechanical work is phase-synchronous with cardiovascular dynamics.
- Adaptive Cadence: HR variability during exercise naturally adjusts movement speed without external cues.
- **Autonomic Modulation:** Engaging with heartbeat timing enhances parasympathetic—sympathetic balance and may improve heart rate variability (HRV).
- Muscle-Pump Synergy: Synchronizing lower limb contractions with cardiac output cycles optimizes venous return and circulation efficiency.
- **Neuromotor Engagement:** Counting and aligning movements with heartbeat fosters proprioceptive awareness and cognitive—motor integration.

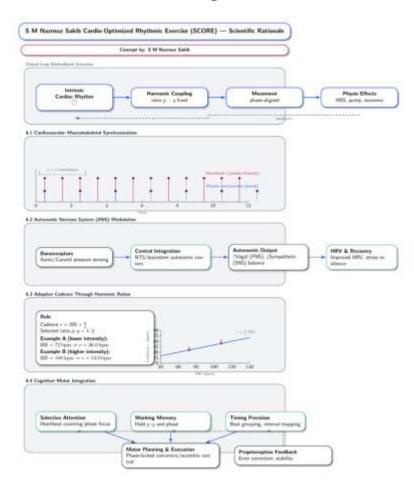
5. BIOGRAPHICAL NOTE ON THE INVENTOR

Figure

Prof. (H.C.) Engr. Dr. S M Nazmuz Sakib, CMSA®, FPWMP®, FTIP®, BIDA®, FMVA®, CBCA® is a multidisciplinary scholar and innovator with expertise spanning engineering, business, law, and medical sciences. He is a Fellow of the Scholars Academic and Scientific Society, a Member of the International Association of Engineers (IAENG), a Bangladeshi Arena Grand Master (AGM) in the International Chess Federation (FIDE), and a lifetime member of the Bangladesh English Language Teachers Association (BELTA) (Pt et al., 2024; Rimban, Dr. Erwin and Shikdar, Sabbir and Ali, Romjan and Rahaman, Md. Arafat Ur, Sakibism, 2025; Sakib, n.d.).

His diverse educational background from primary studies in Sreepur and Jashore to advanced degrees in business, law, and engineering from institutions reflects a lifelong pursuit of interdisciplinary mastery. Engr. Sakib's professional certifications cover digital marketing, cloud architecture, UX design, insurance, human resources, data analytics, project management, engineering design, and healthcare-related disciplines (Sakib, 2023; Sakib, 2024; Sakib, S M Nazmuz FIDE Chess Profile, n.d.).

With a prolific publication record across Springer Nature, IGI Global, CRC Press, Taylor & Francis, Wolters Kluwer, and other academic outlets, Dr. Sakib has contributed to fields as varied as flood warning systems, AI, blockchain, environmental science, psychology, and medical engineering. The creation of SCORE is a natural extension of his commitment to innovative, cross-domain solutions that integrate human physiology, engineering precision, and practical application (Sakib, S M Nazmuz FIDE Chess Profile, n.d.; Sakib, 2023a).


The scientific basis for SCORE lies in the integration of cardiac physiology, exercise science, and neuro-motor coordination. The method leverages the body's intrinsic cardiovascular rhythm as the primary pacing mechanism for movement, creating a closed-loop biofeedback system.

6.1 CARDIOVASCULAR-MUSCULOSKELETAL SYNCHRONIZATION

The human heart operates in rhythmic cycles of systole (contraction) and diastole (relaxation), producing predictable pulses of blood flow and arterial pressure waves. Skeletal muscles, especially in the lower limbs, also serve as auxiliary pumps, aiding venous return through rhythmic contractions. SCORE aligns muscle contractions with specific phases of cardiac output, maximizing the muscle-pump synergy for optimal circulation efficiency (Pierce, 2025; Rosenfeld et al., 2025; You et al., 2025).

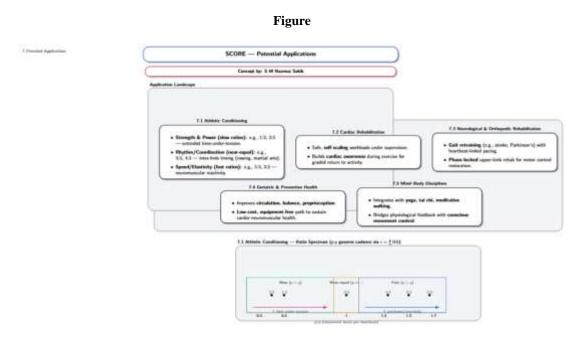
Figure

6 Jackson R. Raccassin

6.2 AUTONOMIC NERVOUS SYSTEM (ANS) MODULATION

By intentionally attending to heartbeat timing, participants engage baroreceptor reflex pathways and central autonomic circuits, potentially improving heart rate variability (HRV): a marker of autonomic balance. This rhythmic entrainment could enhance parasympathetic tone, aiding recovery and stress resilience (Ciesielski et al., 2025; Jalandhra et al., 2025).

6.3 ADAPTIVE CADENCE THROUGH HARMONIC RATIOS


Unlike fixed-tempo exercise, SCORE's cadence changes automatically with heart rate. As intensity increases and HR rises, cadence scales proportionally to maintain the selected p: q harmonic ratio. This ensures that the neuromotor demand remains synchronized with cardiovascular load, minimizing overexertion or mismatch between muscular work and cardiac output (Bučík et al., 2025; Jia et al., 2024; Turc et al., 2025).

6.4 COGNITIVE-MOTOR INTEGRATION

The method requires counting and phase-matching movements to heartbeat cycles, stimulating prefrontal-motor network integration and fostering selective attention, working memory, and timing precision. Such dual-tasking may have neuroprotective benefits and applications in neurological rehabilitation (Birinci et al., 2025; Khan et al., 2025; Schnakers & Laureys, 2023).

7. POTENTIAL APPLICATIONS

7.1 ATHLETIC CONDITIONING

- Strength and Power Development: Slow ratios (e.g., 1:2, 2:5) provide extended time-under-tension without external pacing devices.
- Rhythm and Coordination Training: Near-equal ratios (e.g., 3:3, 4:3) enhance inter-limb timing for sports requiring rhythm (e.g., rowing, martial arts).
- Speed and Elasticity: Fast ratios (e.g., 5:3, 3:2) challenge neuromuscular reactivity.

7.2 CARDIAC REHABILITATION

- Safe, self-scaling workloads for post-cardiac event patients under medical supervision.
- Encourages awareness of cardiac function while exercising, aiding in gradual return to physical activity.

7.3 NEUROLOGICAL & ORTHOPEDIC REHABILITATION

- Gait retraining in stroke or Parkinson's patients using heartbeat-linked pacing.
- Phase-locked upper limb rehabilitation for post-injury motor control restoration.

7.4 GERIATRIC & PREVENTIVE HEALTH

- Improves circulation, balance, and proprioception in older adults.
- Provides a low-cost, equipment-free method for maintaining cardiovascular and neuromuscular health.

7.5 MIND-BODY DISCIPLINES

- Integrates with yoga, tai chi, or meditative walking for enhanced mind-body coherence.
- Bridges physiological feedback with conscious movement control.

8. ADVANTAGES OVER EXISTING METHODS

- 1. Intrinsic Biofeedback: Uses the participant's own heart rhythm as the timing signal no need for music or external metronomes.
- 2. Automatic Load Scaling: Cadence adjusts instantly to changes in HR.
- 3. Versatility: Works with a wide range of movements, from strength to mobility drills.
- 4. Low Barrier to Entry: Minimal or no equipment needed.
- 5. Scientific Testability: Outcomes can be measured via HRV, harmonic adherence, recovery metrics, and functional performance (Botonis et al., 2024; Fisher, 1922; Khan et al., 2025).

9. METHODS & IMPLEMENTATION PROTOCOL

This section outlines how SCORE can be implemented in a controlled, replicable manner for research, clinical, or training purposes. It covers participant preparation, calculation methods, session structure, safety measures, and performance tracking.

9.1 PARTICIPANT PREPARATION

• ELIGIBILITY:

- o Adults with no contraindicating cardiovascular or musculoskeletal conditions.
- Clearance from a physician if there is a history of arrhythmia, uncontrolled hypertension, or recent cardiac events.

• EQUIPMENT REQUIRED:

- o Heart Rate Monitoring: Manual radial pulse, smartwatch, chest strap, or validated HR app.
- o Timing Support (optional): Metronome app capable of custom BPM setting to calculated cadence c.
- o Comfortable exercise clothing and stable footwear.

9.2 CORE CALCULATION FORMULA

c=HR×pqc

Where:

- HR = Instantaneous heart rate (beats per minute)
- p : q = Movement beats per heartbeats ratio
- c = Movement beats per minute (cadence)

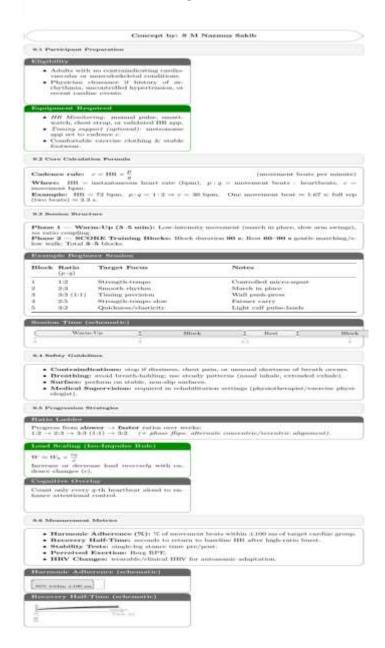
EXAMPLE:

- HR = 72 bpm, BR = 1:2
- $c=72\times(1/2)=36$ movement beats per minute
- One movement beat every 1.67 seconds; full rep (two beats) = \sim 3.3 seconds

9.3 SESSION STRUCTURE

PHASE 1 – WARM-UP (3–5 MINUTES)

• Low-intensity movement (march in place, slow arm swings) without ratio coupling to gradually raise HR.


PHASE 2 – SCORE TRAINING BLOCKS

- Block Duration: 90 seconds per ratio.
- Rest Interval: 60–90 seconds of gentle marching or slow walking.
- Total Blocks: 3–5 blocks per session.

EXAMPLE BEGINNER SESSION:

Block	Ratio (p:q)	Target Focus	Notes
1	1:02	Strength-tempo	Controlled micro-squat
2	2:03	Smooth rhythm	March in place
3	3:3 (1:1)	Timing precision	Wall push-press
4	2:05	Strength-tempo slow	Farmer carry
5	3:02	Quickness/elasticity	Light calf pulse-lands

9.4 SAFETY GUIDELINES

- **Contraindications**: Skip SCORE if experiencing dizziness, chest pain, or shortness of breath outside normal exercise tolerance.
- Breathing: Avoid breath-holding; encourage steady breathing patterns (nasal inhale, extended exhale).
- Surface: Use stable, non-slip surfaces for all standing exercises.
- Medical Supervision: For rehab settings, sessions should be supervised by a physiotherapist or exercise physiologist.

9.5 PROGRESSION STRATEGIES

- 1. **Ratio Ladder:** Progress from slower (1:2) to faster (3:2) ratios over weeks.
- 2. **Phase Flips:** Alternate concentric/eccentric alignment with heartbeat groups.
- 3. Load Scaling (Iso-Impulse Rule):
 - $W\approx W0\times (c0/c)$
 - Increase/decrease load in inverse proportion to cadence changes.
- 4. Cognitive Overlay: Counting only every q-th heartbeat aloud to enhance attentional control.

9.6 MEASUREMENT METRICS

- **Harmonic Adherence** (%): % of movement beats within ±100 ms of intended cardiac group.
- Recovery Half-Time: Time (seconds) to return to baseline HR post high-ratio burst.
- **Stability Tests:** Single-leg stance time pre/post intervention.
- Perceived Exertion: Using Borg RPE scale for subjective load tracking.
- HRV Changes: Evaluated through wearable or clinical monitoring for autonomic adaptation.

10. DISCUSSION

The S M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE) method offers a novel exercise framework that could shift how skeletal muscle and cardiovascular performance are trained in synchrony. By embedding movement timing within the performer's intrinsic cardiac rhythm via rational harmonic ratios, SCORE bridges the gap between cardiovascular conditioning and neuromuscular coordination in ways that traditional tempo training, heart-rate zone exercise, and HRV breathing do not.

10.1 PHYSIOLOGICAL IMPLICATIONS

- Enhanced Circulatory Efficiency: Aligning muscle contractions with cardiac output cycles could amplify venous return, particularly in the lower limbs, thus improving preload and potentially aiding stroke volume efficiency.
- Autonomic Regulation: SCORE's focus on heartbeat-phase awareness may help improve heart rate variability (HRV) and overall autonomic balance, relevant for both athletic recovery and clinical rehabilitation.
- Neuromotor Plasticity: The method's cognitive—motor coupling demands selective attention, temporal processing, and motor precision, potentially stimulating neuroplastic changes in motor and prefrontal cortical circuits.
- Self-Regulating Load: SCORE's built-in cadence adaptation reduces the risk of overexertion, making it safer for
 populations with variable fitness or cardiovascular risk profiles.

Figure

S M Nazmuz Sakib Cardio-Optimized Rhythmic Exercise (SCORE) Discussion Synopsis. SCORE embeds movement timing in the performer's intrinsic cardiac rhythm by maintaining rational harmonic ratios p:q (movement cycles: heartbeats). This heartbeat-locked cadence links cardiovascular conditioning with neuromuscular coordination—unlike fixed-tempo training, heart-rate zones, or HRV breathing—and enables synchronized performance with adaptive load regulation in real time. SCORE Heartbeat–movement coupling (fixed p:q in real time) Circulatory Efficiency Autonomic Regulation Phase-aligned contractions can amplify ve-Heartbeat-phase awareness may improve nous return (esp. lower limbs), support preload, HRV and parasympathetic-sympathetic baland aid movement economy. ance. Neuromotor Plasticity Self-Regulating Load Selective attention, timing, and precision ⇒ Cadence scales with HR ⇒ reduced overcortical engagement and learning. exertion across varied fitness/risk profiles. 10.1 Physiological Implication · Enhanced circulatory efficiency: aligning contractions to cardiac output cycles may boost venous return and preload. · Learning curve: early use benefits from · Autonomic regulation: heartbeat-phase atguided instruction and HR monitoring skills. tention may improve HRV and overall autonomic balance. · Measurement accuracy: noisy HR readings distort cadence, especially at higher ratios. · Neuromotor plasticity: dual cognitive-motor demands can drive temporal · Population specificity: athletes, sedentary, precision and learning. and clinical groups may respond differently.

Vol. 1 No. 1 (2025):1-20

Evidence gap: large trials on VO₂ max, HRV.

injury risk, and coordination are still needed.

· Self-regulating load: cadence adapts with

HR, minimizing overexertion.

10.2 LIMITATIONS AND CONSIDERATIONS

- Learning Curve: Initial application may require focused attention and HR monitoring skills, possibly limiting uptake without guided instruction.
- Measurement Accuracy: Inaccurate heart rate readings can compromise cadence calculations, especially at higher ratios.
- **Population-Specific Effects:** Responses to SCORE may differ between trained athletes, sedentary individuals, and clinical populations; tailored guidelines are necessary.
- Absence of Large-Scale Validation: While theoretically robust, SCORE currently lacks large-scale clinical or athletic trial data to confirm efficacy across outcomes such as VO₂ max, HRV, injury prevention, and coordination measures.

11. FUTURE RESEARCH DIRECTIONS

To establish SCORE's role in exercise science, targeted research is needed across several domains:

11.1 PILOT FEASIBILITY STUDIES

- Test protocol adherence and participant comfort in small, diverse groups (athletes, patients, elderly).
- Measure short-term improvements in harmonic adherence, perceived exertion, and balance stability.

11.2 CONTROLLED TRIALS

- Athletic Performance: Compare SCORE with traditional tempo and heart-rate zone training for endurance, speed, and coordination gains.
- **Rehabilitation:** Assess SCORE's impact on gait mechanics, circulation, and motor control in post-stroke and cardiac rehab populations.

11.3 PHYSIOLOGICAL MECHANISM STUDIES

- Investigate hemodynamic changes via echocardiography or Doppler during phase-locked movement.
- Study neurocognitive effects using EEG or fNIRS to track brain engagement during heartbeat-coupled exercise.

11.4 TECHNOLOGY INTEGRATION

- Development of wearable systems that auto-calculate cadence from live HR and deliver real-time movement cues.
- Explore integration with VR/AR training environments for gamified SCORE sessions.

11.5 LONGITUDINAL IMPACT

- Assess SCORE's influence on cardiovascular health markers, HRV, functional mobility, and fall prevention over 6– 12 months.
- Examine potential psychological benefits, such as increased exercise enjoyment, mindfulness, and adherence.

11. Future Research Directions — SCORE

Aim. To establish SCORE's role in exercise science, targeted research is needed across multiple domains—from feasibility to mechanisms, technology, and long-term outcomes.

11.1PilotFeasibility -> 11.2ControlledTrials -> 11.3PhysiologicalMechanisms -> 11.4TechnologyIntegration ->

11.1 Pilot Feasibility Studies

- Test protocol adherence and participant comfort in small, diverse cohorts (athletes, patients, older adults).
- Measure short-term changes in harmonic adherence, perceived exertion (RPE), and balance stability.

11.3 Physiological Mechanism Studie

- Hemodynamics: echocardiography or Doppler during phase-locked movement to quantify preload/flow changes.
- Neurocognitive: EEG or fNIRS to track brain engagement during heartbeat-coupled exercise.

11.2 Controlled Trials

Athletic performance

 Compare SCORE to fixed-tempo and heartrate zone training for endurance, speed, and coordination.

Rehabilitation

 Assess gait mechanics, circulation, and motor control in post-stroke and cardiac-rehab populations.

11.4 Technology Integration

- Develop wearables that auto-calculate cadence from live HR and provide real-time movement cues.
- Explore VR/AR environments for gamified, heartbeat-synchronized sessions.

11.5 Longitudinal Impact

- Track cardiovascular markers, HRV, functional mobility, and fall prevention over 6–12 months.
- Evaluate psychological outcomes (exercise enjoyment, mindfulness, adherence) alongside clinical metrics.

12. CONCLUSION

SCORE introduces a new organizing principle for exercise by transforming the human heartbeat into the primary pacing mechanism for movement. This intrinsic, adaptive coupling has the potential to enhance performance, support rehabilitation, and promote overall health while requiring minimal equipment. While rooted in robust physiological rationale, SCORE now requires systematic scientific validation to establish its efficacy and optimize its application across populations. Given its adaptability, safety, and low barrier to entry, SCORE may become a transformative tool in both sports science and clinical exercise physiology.

REFERENCES

- Amazon.com: SPROUTING FASCISM OR NATIONALISM IN INDIA: 9798899660757: Nazmuz Sakib, Prof (H.C.) Engr. Dr. S M: Books. (n.d.). https://www.amazon.com/SPROUTING-FASCISM-NATIONALISM-INDIA-Nazmuz/dp/B0FKYW56K2
- Amin, M. R., Koppenhaver, S., Chiou, S., Michele, S., Olivier, G. N., De Oliveira, C. Q., Smith, M. D., Teraguchi, M., Rao, S., Singh, Y., Fabong, H. A., De La Cruz Burelo, E., Hovhannisyan, H. I., Fayvush, G. M., Hossain, I. M. S., Dolan, R. J., Xue, X., Bisht, S., Tabacaru, C. D., . . . Mazumder, S. a. J. (2024, February 10). Utilizing S M Nazmuz Sakibs four principles of potential output in physiotherapy across a variety of medical fields. CME Live Publishing Group. https://www.wecmelive.com/peer-review/utilizing-s-m-nazmuz-sakibs-four-principles-of-potential-output-in-physiotherapy-across-a-variety-of-medical-fields-136.html
- Amin, Md. R., PT. (2025). S M Nazmuz Sakib's Holistic Neuromuscular Rehabilitation with Mindfulness, Rhythmic Movement, Emotional Release, and Adaptive Mobility (HNR-MERAM). JOURNAL OF NEUROLOGY AND NEUROSURGERY, 1(1). https://doi.org/10.61615/JNN/2025/AUG027140814
- 4. Birinci, Y. Z., Pancar, S., Soylu, Y., Topçu, H., Koçyiğit, A., Sarandöl, E., Şimşek, H., & Şahin, Ş. (2025). Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players. Healthcare, 13(14), 1738. https://doi.org/10.3390/healthcare13141738
- 5. Botonis, O. K., Mendley, J., Aalla, S., Veit, N. C., Fanton, M., Lee, J., Tripathi, V., Pandi, V., Khobragade, A.,

- Chaudhary, S., Chaudhuri, A., Narayanan, V., Xu, S., Jeong, H., Rogers, J. A., & Jayaraman, A. (2024). Feasibility of snapshot testing using wearable sensors to detect cardiorespiratory illness (COVID infection in India). Npj Digital Medicine, 7(1). https://doi.org/10.1038/s41746-024-01287-2
- Bučík, R., Mason, G. M., Mulay, S. M., Ho, G. C., Wimmer-Schweingruber, R. F., & Rodríguez-Pacheco, J. (2025).
 Origin of the unusual composition of 3HE-rich solar energetic particles. The Astrophysical Journal, 981(2), 178. https://doi.org/10.3847/1538-4357/adb48d
- Ciesielski, R., Wong, C. S., Panchal, J., Grela, J., Dimalanta, C., Walton, A., Engstrom, H., Ring, M. D., Abraham, J., Stinis, C., Romero, S., & Barnacka, A. (2025). Non-invasive blood pressure monitoring with in-ear infrasonic hemodynography for preventative cardiovascular care. Deleted Journal, 2(1). https://doi.org/10.1038/s44325-025-00076-4
- 8. Engelen, T., Schuhmann, T., Sack, A. T., & Tallon-Baudry, C. (2024). The cardiac, respiratory and gastric rhythms independently modulate corticospinal excitability. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2024.09.10.612221
- Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London Series a Containing Papers of a Mathematical or Physical Character, 222(594–604), 309–368. https://doi.org/10.1098/rsta.1922.0009
- Florindi, C., Simoncini, G., Lanzani, G., & Lodola, F. (2025). Shining light in a heartbeat: Controlling cardiac bioelectricity with membrane-targeted photoswitches. Applied Physics Letters, 126(23). https://doi.org/10.1063/5.0270696
- 11. Hauser, R., Besson, C., Degache, F., & Gremeaux, V. (2025). Heart rate variability response to low-frequency sounds vibrations in regularly active male subjects. Frontiers in Sports and Active Living, 7. https://doi.org/10.3389/fspor.2025.1573660
- 12. Jalandhra, G. K., Srethbhakdi, L., Davies, J., Nguyen, C. C., Phan, P. T., Och, Z., Ashok, A., Lim, K. S., Phan, H., Nho, T., DO, Lovell, N. H., & Rnjak-Kovacina, J. (2025). Materials advances in devices for heart disease interventions. Advanced Materials. https://doi.org/10.1002/adma.202420114
- 13. Jan, Y., & Cheung, W. C. (2025). Muscle oxygenation regulation in physical therapy and rehabilitation. Medical Gas Research, 16(1), 66–75. https://doi.org/10.4103/mgr.medgasres-d-24-00149
- 14. Jia, M., Luo, A., & Qiu, B. (2024). FCN4Flare: Fully convolution neural networks for flare detection. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stae2789
- 15. Khan, O. A., Rahman, S., Baduni, K., & Modlesky, C. M. (2025). Assessment of cortical activity, functional connectivity, and neuroplasticity in cerebral palsy using functional near-infrared spectroscopy: A scoping review. Developmental Medicine & Child Neurology. https://doi.org/10.1111/dmcn.16238
- 16. Le, D. (2025). Correlation-Based approach for heart rate extraction using UWB impulse Radar. International Journal of Fuzzy Logic and Intelligent Systems, 25(1), 55–62. https://doi.org/10.5391/ijfis.2025.25.1.55
- 17. Manning, D., Rivera, E. J., Rhana, P., Matsumoto, C., Fong, Z., Thai, P. N., Muñoz, M. F., Contreras, J. E., Kim, S., Grainger, N., Chiamvimonvat, N., Bautista, G. M., & Santana, L. F. (2025). Microvascular rarefaction in the sinoatrial node. JACC. Clinical Electrophysiology. https://doi.org/10.1016/j.jacep.2025.06.007
- 18. Marchand, F., Pageaux, B., Forestier, N., & Monjo, F. (2025). Prolonged passive vibration of Achilles and patellar tendons decreases effort perception during subsequent cycling tasks. Journal of Sport and Health Science/Journal of Sport and Health Science, 101061. https://doi.org/10.1016/j.jshs.2025.101061
- Pierce, K. V. (2025, May 7). The cardiovascular system in animals. MSD Veterinary Manual. https://www.msdvetmanual.com/circulatory-system/cardiovascular-system-introduction/the-cardiovascular-system-in-animals
- 20. Pt, M. R. A., Hasan, M. E., Munshi, M. B., Singh, Y., Fabong, H. A., De La Cruz Burelo, E., Hovhannisyan, H. I., Fayvush, G. M., Hossain, I. M. S., Dolan, R. J., Xue, X., Bisht, S., Tabacaru, C. D., Rimban, E. L., Ioannidis, J. P., Amin, R., Schwartz, J., Khattak, W. A., Geschwind, D., . . . Bhowal, A. (2024, February 6). S M Nazmuz Sakibs Theory of Toxic Comparison: An Analysis of the Psychiatric Consequences of Sakibphobia on Sociological Examination, Explored within the Frameworks of Structural Functionalism, Symbolic Interactionism, and Conflict Perspective. CME Live Publishing Group. https://www.wecmelive.com/peer-review/s-m-nazmuz-sakibs-theory-of-toxic-comparison-an-analysis-of-the-psychiatric-consequences-of-sakibphobia-on-sociological--133.html
- 21. Rimban, Dr. Erwin and Shikdar, Sabbir and Ali, Romjan and Rahaman, Md. Arafat Ur, Sakibism. (2025). Sakibism: A Philosophical Doctrine of S M Nazmuz Sakib Including Neutral Harmony and Ethical Balance Through Sakibist

- Principles. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5385874
- 22. Rimban, Dr. Erwin and Tanvir Mahtab Faysal, Mirza MD. and Islam, Md. Ahsanul and Sonda, Israth Jahan and Tamanna, Lubbabah Sugra Siddiqi and Hasan, Mehedi and TALUKDAR, NUR- E- IMAN NASIM and Mia, Liton and Hossain, Md Nazmul and Hasan, Ejaz and Rayna, Nssazifa Thasin and Amin, PT, PhD, Dr. Md. Ruhul. (n.d.). S M Nazmuz Sakib Model of Geopolitical Space. SSRN. https://doi.org/10.2139/ssrn.5385875
- 23. Rosenfeld, R. M., Grega, M. L., Karlsen, M. C., Dabrh, A. M. A., Aurora, R. N., Bonnet, J. P., Donnell, L., Fitzpatrick, S. L., Frates, B., Joy, E. A., Kapustin, J. F., Noe, D. R., Panigrahi, G., Ram, A., Reisner, L. S. L., Valencia, W. M., Weatherspoon, L. J., Weber, J. M., Staffier, K. L., & Gulati, M. (2025). Lifestyle Interventions for treatment and remission of Type 2 diabetes and prediabetes in adults: A Clinical Practice Guideline from the American College of Lifestyle Medicine. American Journal of Lifestyle Medicine, 19(2_suppl). https://doi.org/10.1177/15598276251325488
- 24. Sakib, S. M. N. (n.d.). S M Nazmuz Sakib's Tangent-Length Law for Triangle Angles. Authorea. https://www.authorea.com/doi/full/10.22541/au.175510718.82689471/v1
- 25. Sakib, S. M. N. (2023a). S M Nazmuz Sakib's Toxic Comparative Theory: An Analysis of Sakibphobia. Cambridge Open Engage. https://doi.org/10.33774/coe-2023-r069s
- 26. Sakib, S. M. N. (2023b). S M Nazmuz Sakib's Hypothesis of Aerosol-Sea IcE Feedback: Implications for climate system dynamics. Asian Pacific Journal of Environment and Cancer, 6(1), 151–159. https://doi.org/10.31557/apjec.2023.6.1.151-159
- 27. Sakib, S. M. N. (2024). The 2003 US Intervention of Iraq: Objectives, Implications, and Global Security Dynamics. In Handbook of Migration, International Relations and Security in Asia (pp. 1–20). https://doi.org/10.1007/978-981-99-8001-7_10-1
- 28. Sakib, S M Nazmuz FIDE Chess Profile. (n.d.). International Chess Federation (FIDE). https://ratings.fide.com/profile/315105428
- 29. Schnakers, C., & Laureys, S. (2023). Coma and disorders of consciousness. In Springer eBooks. https://doi.org/10.1007/978-3-031-50563-8
- 30. SPROUTING FASCISM OR NATIONALISM IN INDIA. (n.d.). http://generis-publishing.com/. https://generis-publishing.com/book.php?title=strong-sprouting-fascism-or-nationalism-in-india-strong-2881
- 31. Turc, L., Takahashi, K., Kajdič, P., Kilpua, E. K. J., Sarris, T., Palmroth, M., Soucek, J., Pfau-Kempf, Y., Dimmock, A., & Takahashi, N. (2025). From foreshock 30-Second waves to magnetospheric PC3 waves. Space Science Reviews, 221(2). https://doi.org/10.1007/s11214-025-01152-y
- 32. Vauthier, S., Noël, C., Foltête, E., Chambert, J., & Jacquet, E. (2025). Mechanical characterisation of hand first dorsal interosseous muscle during gripping. Journal of the Mechanical Behavior of Biomedical Materials/Journal of Mechanical Behavior of Biomedical Materials, 107072. https://doi.org/10.1016/j.jmbbm.2025.107072
- 33. Xu, J., & Wang, F. (2025). Cardiac Mechano-Electrical-Fluid Interaction: A brief review of recent advances. Eng—Advances in Engineering, 6(8), 168. https://doi.org/10.3390/eng6080168
- 34. You, L., Luo, Y., Cheng, Q., Shen, L., & Ge, J. (2025). High-Suitcordance Intelligent fibers for Panvascular Disease Monitoring-Intervention. Advanced Fiber Materials. https://doi.org/10.1007/s42765-025-00542-9