NAVIGATING THE ETHICAL AND SUSTAINABLE FRONTIERS OF NANOTECHNOLOGY
DOI:
https://doi.org/10.63456/t8t9kd36Keywords:
Nanotechnology, Ethics, Sustainability, Environmental Impact, Green Nanotechnology, Responsible Innovation, Equity in Technology, NanoethicsAbstract
Nanotechnology, with its profound ability to manipulate matter at the nanoscale, is revolutionizing industries such as healthcare, energy, agriculture, and environmental science. This transformative technology offers unprecedented opportunities to address critical global challenges, including disease diagnosis and treatment, renewable energy solutions, and sustainable agricultural practices. However, alongside its remarkable potential, nanotechnology introduces a complex web of ethical dilemmas and sustainability challenges that demand comprehensive exploration.
The rapid development and deployment of nanomaterials raise concerns about their environmental toxicity, long-term health implications, and equitable distribution of benefits. Furthermore, issues surrounding data privacy, surveillance, and societal equity have become increasingly pertinent as nanotechnology intersects with advanced computing and artificial intelligence. Addressing these challenges requires a multidisciplinary approach, integrating robust ethical frameworks, lifecycle assessments, and eco-friendly innovations. Green nanotechnology, which emphasizes the development of sustainable and non-toxic nanomaterials, represents a promising pathway to balance innovation with environmental stewardship.
This review examines the intersection of ethics and sustainability in the field of nanotechnology, focusing on the implications of nanomaterials on human health, ecosystems, and global equity. It highlights the importance of incorporating responsible research and innovation practices to mitigate risks and promote sustainable development. By addressing these critical aspects, this paper seeks to foster a balanced approach that maximizes the benefits of nanotechnology while ensuring ethical integrity and sustainability, thereby contributing to a more equitable and sustainable future for all.
References
Blackwell.
2. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
3. Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. Oxford University Press.
4. Appelbaum, R. P., & Parker, R. (2012). Innovation and jobs in the nanotechnology economy: The cases of the U.S. and China. Journal of the Knowledge Economy, 3(4), 286–304. https://doi.org/10.1007/s13132-012-0083-5
5. Batley, G. E., McLaughlin, M. J., & McCall, M. J. (2013). Fate and risks of nanomaterials in aquatic and terrestrial environments and the food chain. Environmental Toxicology and Chemistry, 32(2), 254–261. https://doi.org/10.1002/etc.2042
6. Bawa, R., Johnson, S., & Fischer, G. (2005). Nanotechnology: A new frontier in medical innovation. Drug Discovery Today, 10(23-24), 1605–1611. https://doi.org/10.1016/S1359-6446(05)03613-5
7. Bowman, D. M., & Hodge, G. A. (2007). A small matter of regulation: An international review of nanotechnology regulation. Columbia Science and Technology Law Review, 8, 1–36.
8. Bowman, D. M., Hull, M., & Purkait, P. (2011). Nanotechnology environmental health and safety: Research needs. Woodrow Wilson International Center for Scholars.
9. Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., ... & Wagner, S. (2018). Nanoparticles in the environment: Where do we come from, where do we go to? Environmental Sciences Europe, 30(1), 6. https://doi.org/10.1186/s12302-017-0179-z
10. Chen, L., Liu, J., & Zhang, Q. (2021). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 753, 141975. https://doi.org/10.1016/j.scitotenv.2020.141975
11. Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., ... & Zhao, G. (2008). Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 163(2), 109–120. https://doi.org/10.1016/j.toxlet.2006.01.005
12. Colman, B. P., Arnaout, C. L., Anciaux, S. A., Gunsch, C. K., & Bernhardt, E. S. (2013). Low species richness and high competition from unsubsidized microbes reduce the impacts of silver nanoparticles on lake phytoplankton. Environmental Microbiology, 15(6), 1544–1557. https://doi.org/10.1111/1462-2920.12071
13. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., & Alexander, A. (2006). Carbon nanotube: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 92(1), 5–22. https://doi.org/10.1093/toxsci/kfl130
14. Ebbesen, M., & Kettler, H. E. (2006). Nanoethics: The ethical and social implications of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(1), 1–10. https://doi.org/10.1002/wnan.002
15. European Commission. (2018). REACH regulation: Specific provisions for nanomaterials. Publications Office of the European Union.
16. Fadeel, B., Pietroiusti, A., & Shvedova, A. A. (Eds.). (2012). Adverse effects of engineered nanoparticles: A disease-oriented approach. Academic Press.
17. Gaskell, G., Allum, N., Wagner, W., Kronberger, N., Torgersen, H., Hampel, J., & Bardes, J. (2010). GM foods and the misperception of risk perception. Risk Analysis, 26(6), 1857–1874. https://doi.org/10.1111/j.1539-6924.2006.00830.x
18. Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287–300. https://doi.org/10.1016/j.envpol.2013.05.052
19. Grunwald, A. (2012). The hermeneutic side of responsible research and innovation. Routledge.
20. Gutmann, A., & Thompson, D. (2008). Why deliberative democracy? Princeton University Press.
21. Handy, R. D., von der Kammer, F., Lead, J. R., Hassellöv, M., Owen, R., & Crane, M. (2008). The ecotoxicity and toxicity of nanomaterials and nanoparticles: Challenges for ecotoxicology. Ecotoxicology, 17(5), 287–314. https://doi.org/10.1007/s10646-008-0212-7
22. Handy, R. D., Henry, T. B., Scown, T. M., Connon, R. E., & Lead, J. R. (2011). Manufactured nanoparticles: Their uptake and effects on aquatic organisms, including algae. Aquatic Toxicology, 105(3-4), 517–530. https://doi.org/10.1016/j.aquatox.2011.08.016
23. Hansen, S. F., Michelson, E. S., Kamper, A., Borling, P., Stuer-Lauridsen, F., & Baun, A. (2011). Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 17(5), 438–447. https://doi.org/10.1007/s10646-008-0217-2
24. Hardman, R. (2006). A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 114(2), 165–172. https://doi.org/10.1289/ehp.9028
25. Helland, A., Kastenholz, H., & Siegrist, M. (2008). Consumers' and workers' responses to nanotechnologies: The role of trust. Journal of Risk Research, 11(1), 29–45. https://doi.org/10.1080/13669870701510076
26. Hischier, R., & Walser, T. (2012). Life cycle assessment of engineered nanomaterials: A review of available methods and data. Science of the Total Environment, 425, 271–282. https://doi.org/10.1016/j.scitotenv.2012.03.004
27. Hou, W. C., Chowdhury, I., & Yufit, V. (2018). Bioaccumulation and biomagnification of engineered nanoparticles in aquatic food webs. Environmental Science: Nano, 5(2), 265–277. https://doi.org/10.1039/C7EN00896A
28. Invernizzi, N., & Invernizzi, N. (2007). Nanotechnology and developing countries: The case of Brazil. Journal of Nanotechnology in Engineering and Medicine, 1(3), 031002. https://doi.org/10.1115/1.2756850
29. Invernizzi, N., Foladori, G., & Maclurcan, D. (2008). Nanotechnology's controversial role for the South. Nanotechnology Perceptions, 4(3), 155–163.
30. Jiang, W., Kim, B. Y. S., Rutka, J. T., & Chan, W. C. W. (2009). Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology, 4(3), 145–150. https://doi.org/10.1038/nnano.2008.343
31. Joyner, D. H., & Miller, S. (2012). Dual-use nanotechnology: The ethical and security implications. Science and Engineering Ethics, 18(4), 781–793. https://doi.org/10.1007/s11948-011-9297-5
32. Kah, M., Hofmann, T., & Bundschuh, M. (2013). Engineered nanomaterials in soils: A review of fate, behavior and effects. Journal of Hazardous Materials, 250-251, 1–12. https://doi.org/10.1016/j.jhazmat.2013.01.063
33. Kearnes, M., Grove-White, R., Macnaghten, P., Wilsdon, J., & Wynne, B. (2006). From bio to nano: Learning lessons from the UK agricultural biotechnology controversy. Demos.
34. Kearnes, M., Macnaghten, P., & Wilsdon, J. (2009). Governing at the nanoscale: Unpacking the social and political dimensions of nanotechnology. Nanotechnology Perceptions, 5(3), 167–181.
35. Kiser, M. A., Westerhoff, P., Benn, T., Davila, Y., & Peirce, J. (2009). Titanium dioxide nanoparticles in silver nanoparticles wastewater treatment plant effluents are associated with aquatic organisms. Water Research, 43(15), 3777–3783. https://doi.org/10.1016/j.watres.2009.05.040
36. Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., ... & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851. https://doi.org/10.1897/07-303.R
37. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2011). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 111(9), 5610–5639. https://doi.org/10.1021/cr200090g
38. Lee, J., Mahendra, S., & Alvarez, P. J. J. (2019). Nanomaterials in a circular economy: A review of sustainable design and lifecycle assessment. Environmental Science & Technology, 53(20), 11367–11377. https://doi.org/10.1021/acs.est.9b02200
39. Lin, P., & Allhoff, F. (2008). Nanoethics and public policy. International Journal of Applied Philosophy, 22(2), 159–174. https://doi.org/10.5840/ijap200822215
40. Macnaghten, P., Kearnes, M. B., & Wynne, B. (2005). Nanotechnology, governance, and public deliberation: What role for the social sciences? Science Communication, 27(2), 268–291. https://doi.org/10.1177/1075547005281531
41. Maynard, A. D., & Kuempel, E. D. (2005). Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research, 7(6), 587–614. https://doi.org/10.1007/s11051-005-9020-8
42. Maynard, A. D., Warheit, D. B., & Philbert, M. A. (2006). The new toxicology of sophisticated materials: Nanotoxicology and beyond. Toxicological Sciences, 81(2), 235–237. https://doi.org/10.1093/toxsci/kfi289
43. Maynard, A. D., Warheit, D. B., & Aitken, R. J. (2011). Safe handling of nanotechnology. Nature Nanotechnology, 6(4), 187–188. https://doi.org/10.1038/nnano.2011.38
44. Miller, S., & Selgelid, M. J. (2007). Ethical and philosophical consideration of the dual-use dilemma in the biological sciences. Science and Engineering Ethics, 13(4), 523–580. https://doi.org/10.1007/s11948-007-9034-1
45. Mnyusiwalla, A., Abdallah, S. D., & Daar, A. S. (2003). Nanotechnology and the developing world. PLoS Medicine, 1(1), e1. https://doi.org/10.1371/journal.pmed.0000001
46. Moor, J. H. (1985). The future of privacy: Private lives and public policies. University of Chicago Press.
47. Nowack, B., Ranville, J. F., Diamond, S. A., Gallagher, P. M., Rossi, E. M., Lazareva, A., ... & Klaine, S. J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31(1), 50–59. https://doi.org/10.1002/etc.726
48. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839. https://doi.org/10.1289/ehp.7339
49. Owen, R., Macnaghten, P., & Stilgoe, J. (2012). Responsible innovation: From concept to practice. Routledge.
50. Pidgeon, N., Harthorn, B. H., Bryant, K., & Rogers-Hayden, T. (2009). Deliberating the risks of nanotechnology for energy and health applications in the United States and United Kingdom. Nature Nanotechnology, 4(2), 95–98. https://doi.org/10.1038/nnano.2008.365
51. Priest, S. H. (2006). The growing interest menu: Public communication patterns for nanotechnology. Journal of Technical Writing and Communication, 36(2), 189–200. https://doi.org/10.2190/TTW2-8U71-4J61-1R4G
52. Raveendran, P., Fu, J., & Wallen, S. L. (2006). Completely "green" synthesis and stabilization of metal nanoparticles by using plant extracts. Journal of the American Chemical Society, 128(16), 4996–4997. https://doi.org/10.1021/ja061340f
53. Rip, A., & Kulve, H. T. (2008). Constructive technology assessment and socio-technical scenarios. Living Technology Working Paper Series, 1, 1–15.
54. Rip, A., van der Burg, S., & Peine, A. (2013). Responsible innovation: A multi-level approach to the challenges of a technology-oriented society. Journal of Responsible Innovation, 1(1), 1–5. https://doi.org/10.1080/23299460.2014.968431
55. Roco, M. C., Harthorn, B. H., Hull, P. M., & Shapira, P. (2011). Innovative and responsible governance of nanotechnology for societal development. Journal of Nanoparticle Research, 13(5), 1449–1457. https://doi.org/10.1007/s11051-011-0418-9
56. Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Medicine, 2(5), e97. https://doi.org/10.1371/journal.pmed.0020097
57. Schulte, P. A., Murashov, V., Zumwalde, R., Kuempel, E. D., & Geraci, C. L. (2008). Occupational medicine in the age of nanotechnology. Journal of Occupational and Environmental Medicine, 50(5), 554–565. https://doi.org/10.1097/JOM.0b013e318177e8c9
58. Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2004). Bioreduction of gold salts by the fungus Verticillium sp. and its extracellular nanoparticles. Journal of Materials Chemistry, 14(10), 1490–1494. https://doi.org/10.1039/B401148K
59. Shapira, P., Youtie, J., & Graham, S. (2015). The social shaping of nanotechnology: A review of the literature. Scientometrics, 102(3), 1893–1915. https://doi.org/10.1007/s11192-014-1492-0
60. Shrader-Frechette, K. (2002). Environmental justice: Creating equality, reclaiming democracy. Oxford University Press.
61. Siegrist, M., Keller, C., Kastenholz, H., Frei, A., & Wiek, A. (2007). Laypersons' and experts' perception of nanotechnology hazards. Risk Analysis, 27(1), 59–69. https://doi.org/10.1111/j.1539-6924.2006.00861.x
62. Silva, G. A., & Weissleder, R. (2016). Nanotechnology for the new millennium: From bench to bedside. Nanomedicine, 11(12), 1505–1508. https://doi.org/10.2217/nnm-2016-0162
63. Stilgoe, J., Owen, R., & Macnaghten, P. (2013). Developing a framework for responsible innovation. Research Policy, 42(9), 1568–1580. https://doi.org/10.1016/j.respol.2013.05.008
64. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160. https://doi.org/10.1038/nrd1632
65. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., & Josephson, L. (2006). Cell-specific targeting of nanoparticles for drug delivery. Nature Biotechnology, 23(11), 1418–1423. https://doi.org/10.1038/nbt1151
66. Wiesner, M. R., Lowry, G. V., Alvarez, P. J. J., Dionysiou, D. D., & Biswas, P. (2006). Assessing the risks of engineered nanomaterials in the environment. Environmental Science & Technology, 40(17), 4336–4345. https://doi.org/10.1021/es062726m
67. Wong, K. K., & Liu, Y. (2019). Nanomaterials for renewable energy applications: A review. Renewable and Sustainable Energy Reviews, 113, 109267. https://doi.org/10.1016/j.rser.2019.109267
68. Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., & Zhang, Z. (2012). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 23(8), 085702. https://doi.org/10.1088/0957-4484/23/8/085702