TRANSFORMING MOLD MANUFACTURING: A REVIEW OF ADDITIVE MANUFACTURING IN METALLIC AND COMPOSITE TOOLING
Keywords:
3d Printing, Additive Manufacturing, Composite Molds, Metallic Molds, Structural IntegrityAbstract
Additive Manufacturing (Am) Is Reshaping Traditional Mold Production By Enabling The Fabrication Of Complex, Customized Structures With Improved Material Efficiency And Reduced Lead Times. This Paper Investigates The Application Of Am In The Production Of Metallic And Composite Molds, Focusing On Key Techniques Such As Powder Bed Fusion (Pbf), Directed Energy Deposition (Ded), Binder Jetting, And Vat Photopolymerization. The Study Evaluates Material Suitability, Design Flexibility, Sustainability, And Process Efficiency, While Also Addressing Existing Challenges Such As High Production Costs, Material Limitations, And Post-Processing Demands. Furthermore, It Highlights Recent Advancements In Multi-Material Printing, Process Automation, And Hybrid Manufacturing Approaches. By Synthesizing Recent Research And Technological Trends, This Work Offers Insights Into The Evolving Role Of Am In Mold Manufacturing And Its Potential To Replace Or Complement Conventional Mold Fabrication Methods Across Diverse Industries.
References
[1] T. C. Dzogbewu, “Additive Manufacturing Of Tial-Based Alloys,” Vol. 35, 2020, Doi:
2020 Https://Doi.Org/10.1051/Mfreview/2020032.
[2] N. Silin And D. J. Cuscueta, “Sciencedirect Rapid Prototyping Of A Heat Management
Device For Hydride Forming Alloys By Additive Manufacturing,” Int. J. Hydrogen
Energy, Vol. 48, No. 88, Pp. 34430–34439, 2023, Doi: 10.1016/J.Ijhydene.2023.05.212.
[3] G. Fayaz And S. Kazemzadeh, “Towards Additive Manufacturing Of Compressor
Impellers : 3d Modeling Of Multilayer Laser Solid Freeform Fabrication Of Nickel
Alloy 625 Powder Mixed With Nano-Ceo 2 On Aisi 4140,” Addit. Manuf., Vol. 20, No.
January, Pp. 182–188, 2018, Doi: 10.1016/J.Addma.2018.02.001.
[4] M. Salmi, K. Paloheimo, J. Tuomi, J. Wolff, And A. Mäkitie, “Accuracy Of Medical
Models Made By Additive Manufacturing ( Rapid Manufacturing ),” Yjcms, Vol. 41,
No. 7, Pp. 603–609, 2013, Doi: 10.1016/J.Jcms.2012.11.041.
[5] A. B. Cameron Et Al., “Assessment Of The Trueness Of Additively Manufactured Mol3
% Zirconia Crowns At Different Printing Orientations With An Industrial And Desktop
3d Printer Compared To Subtractive Manufacturing,” J. Dent., Vol. 144, No. March, P.
104942, 2024, Doi: 10.1016/J.Jdent.2024.104942.
[6] N. Jyeniskhan, K. Shomenov, H. Ali, And E. Shehab, “Exploring The Integration Of
Digital Twin And Additive Manufacturing Technologies,” Int. J. Light. Mater. Manuf.,
Vol. 7, No. 6, Pp. 860–881, 2024, Doi: 10.1016/J.Ijlmm.2024.06.004.
[7] D. Cooper, J. Thornby, N. Blundell, R. Henrys, M. A. Williams, And G. Gibbons,
“Design And Manufacture Of High Performance Hollow Engine Valves By Additive
Layer Manufacturing,” J. Mater., Vol. 69, Pp. 44–55, 2015, Doi:
10.1016/J.Matdes.2014.11.017.
[8] S. Tan And Y. Zhang, “Cirp Annals - Manufacturing Technology A Generative Design
Method Based On Spline Scanning For Additive Manufacturing,” Vol. 73, Pp. 93–96,
2024, Doi: 10.1016/J.Cirp.2024.04.025.
[9] K. R. Balasubramanian And V. Senthilkumar, Additive Manufacturing Applications For
Metals And Composites. Hershey, Pa, Usa,: Advances In Civil And Industrial
Engineering; Igi Global, 2020. Doi: Isbn 978-1-79984-054-1.
[10] L. Zhou Et Al., “Additive Manufacturing : A Comprehensive Review,” 2024.
[11] J. Gardan, “Additive Manufacturing Technologies : State Of The Art And Trends,” Vol.7543, No. November, 2015, Doi: 10.1080/00207543.2015.1115909.
[12] J. Gardan, Additive Manufacturing Technologies For Polymer Composites : State-OfThe-Art And Future Trends. Elsevier Inc., 2020. Doi: 10.1016/B978-0-12-819535-
2/00001-6.
[13] H. Wang, Y. Wan, F. Meng, G. Zhao, X. Liu, And S. Zhang, “Precise Design ,
Preparation , And Biomechanical Evaluation Of Customized Additively Manufactured
Ti6al4v Porous Fusion Cage,” J. Mater. Res. Technol., Vol. 33, No. September, Pp.
8198–8210, 2024, Doi: 10.1016/J.Jmrt.2024.11.121.
[14] A. J. Cano, A. Salazar, And J. Rodríguez, “Structural Integrity Of Polymers Processed
By Additive Manufacturing Techniques Using Residual Strength Diagrams,” Theor.
Appl. Fract. Mech., Vol. 134, No. Pb, P. 104727, 2024, Doi:
10.1016/J.Tafmec.2024.104727.
[15] S. Patel, Y. Liu, Z. Siddique, And I. Ghamarian, “Metal Additive Manufacturing:
Principles And Applications,” J. Manuf. Process., Vol. 131, No. September, Pp. 1179–
1201, 2024, Doi: 10.1016/J.Jmapro.2024.09.101.
[16] J. Lee, S. Jang, S. Park, M. Soo Park, And C. J. Bae, “In-Situ Monitoring Of MultiPhysical Dynamics In Ceramic Additive Manufacturing,” Mater. Des., Vol. 246, No.
September, P. 113335, 2024, Doi: 10.1016/J.Matdes.2024.113335.
[17] N. Phillips, D. Kumar, Y. Liu, And S. Namilae, “Zero-Bias Deep Neural Network For
Defect Detection In Composite Additive Manufacturing Using Multisource In-Situ
Data,” Aerosp. Sci. Technol., Vol. 155, No. P3, P. 109729, 2024, Doi: 10.2514/6.2024-
0264.
[18] H. Son And C. Kim, “Automation In Construction 3d Structural Component
Recognition And Modeling Method Using Color And 3d Data For Construction
Progress Monitoring,” Autom. Constr., Vol. 19, No. 7, Pp. 844–854, 2010, Doi:
10.1016/J.Autcon.2010.03.003.
[19] P. M. Bhatt, A. M. Kabir, M. Peralta, H. A. Bruck, And S. K. Gupta, “A Robotic Cell
For Performing Sheet Lamination-Based Additive Manufacturing,” Addit. Manuf., Vol.
27, No. February, Pp. 278–289, 2019, Doi: 10.1016/J.Addma.2019.02.002.
[20] D. Svetlizky Et Al., “Directed Energy Deposition (Ded) Additive Manufacturing:
Physical Characteristics, Defects, Challenges And Applications,” Mater. Today, Vol.
49, No. October, Pp. 271–295, 2021, Doi: 10.1016/J.Mattod.2021.03.020.
[21] K. L. Sampson Et Al., “Multimaterial Vat Polymerization Additive Manufacturing,” Acs
Appl. Polym. Mater., Vol. 3, No. 9, Pp. 4304–4324, 2021, Doi:
10.1021/Acsapm.1c00262.
[22] O. Gülcan, K. Günaydın, And A. Tamer, “The State Of The Art Of Material Jetting—A
Critical Review,” Polymers (Basel)., Vol. 13, No. 16, 2021, Doi:
10.3390/Polym13162829.
[23] S. I. Park, D. W. Rosen, S. Kyum Choi, And C. E. Duty, “Effective Mechanical
Properties Of Lattice Material Fabricated By Material Extrusion Additive
Manufacturing,” Addit. Manuf., Vol. 1, Pp. 12–23, 2014, Doi:
10.1016/J.Addma.2014.07.002.
[24] S. Sun, M. Brandt, And M. Easton, Powder Bed Fusion Processes: An Overview.
Elsevier Ltd, 2017. Doi: 10.1016/B978-0-08-100433-3.00002-6.
[25] M. Li, W. Du, A. Elwany, Z. Pei, And C. Ma, “Metal Binder Jetting Additive
Manufacturing: A Literature Review,” J. Manuf. Sci. Eng. Trans. Asme, Vol. 142, No.
9, Pp. 1–17, 2020, Doi: 10.1115/1.4047430.
[26] K. Ronoh, F. Mwema, S. Dabees, And D. Sobola, “Biomedical Engineering Advances
Advances In Sustainable Grinding Of Different Types Of The Titanium Biomaterials
For Medical Applications : A Review,” Biomed. Eng. Adv., Vol. 4, No. May, P. 100047,
2022, Doi: 10.1016/J.Bea.2022.100047.
[27] K. Moeinfar, F. Khodabakhshi, And S. F. Kashani-Bozorg, “A Review On Metallurgical
Aspects Of Laser Additive Manufacturing ( Lam ): Stainless Steels , Nickel Superalloys
, And Titanium Alloys,” 2021.
[28] A. Rocha Et Al., “Comprehensive Review Of Advanced Methods For Improving The
Parameters Of Machining Steels,” Vol. 125, No. August 2023, Pp. 111–142, 2024, Doi:
10.1016/J.Jmapro.2024.07.044.
[29] Q. Cao, K. Zhang, H. Pan, X. Yang, C. Zhang, And N. Dang, “International Journal Of
Hydrogen Energy An Overview On The Active Aluminum Alloys With Diverse
Compositions : Hydrogen-Production-Type And Structural-Type,” Int. J. Hydrogen
Energy, Vol. 96, No. October, Pp. 113–125, 2024, Doi:
10.1016/J.Ijhydene.2024.11.296.
[30] J. S. Saini, L. Dowling, D. Trimble, And D. Singh, “Mechanical Properties Of Selective
Laser Melted Cocr Alloys : A Review,” J. Mater. Eng. Perform., Vol. 30, No. 12, Pp.
8700–8714, 2021, Doi: 10.1007/S11665-021-06283-1.
[31] A. Mostafaei Et Al., “Progress In Materials Science Additive Manufacturing Of NickelBased Superalloys : A State-Of-The-Art Review On Process-Structure-Defect-Property
Relationship,” Prog. Mater. Sci., Vol. 136, No. March, P. 101108, 2023, Doi:
10.1016/J.Pmatsci.2023.101108.
[32] K. Morshed-Behbahani, A. Aliyu, D. P. Bishop, And A. Nasiri, “Additive
Manufacturing Of Copper-Based Alloys For High-Temperature Aerospace
Applications : A Review,” Mater. Today Commun., Vol. 38, No. February, P. 108395,
2024, Doi: 10.1016/J.Mtcomm.2024.108395.
[33] J. Rodriguez, M. Doche, And J. Hihn, “Applied Surface Science Advances
Electropolishing Of Gold And Gold Alloys In Hcl-Glycerol-Ethanol Electrolytes,” Appl.
Surf. Sci. Adv., Vol. 21, No. April, P. 100604, 2024, Doi:
10.1016/J.Apsadv.2024.100604.
[34] S. Ahmad Et Al., “Innovations In Additive Manufacturing Of Shape Memory Alloys :
Alloys , Microstructures , Treatments , Applications,” Vol. 32, No. August, Pp. 4136–
4197, 2024.
[35] J. Jia Et Al., “International Journal Of Electrochemical Science Stability And
Performance Of Lithium Metal Batteries Using Silicon And Silver Alloyed Separator
Surfaces,” Int. J. Electrochem. Sci., Vol. 19, No. 9, P. 100742, 2024, Doi:
10.1016/J.Ijoes.2024.100742.
[36] H. Im, K. Sim, And T. Seong, “Thermally Stable Agcu Alloy Disc Array For Near
Infrared Filters,” Curr. Appl. Phys., Vol. 20, No. 12, Pp. 1321–1327, 2020, Doi:
10.1016/J.Cap.2020.08.017.
[37] C. Ren, H. He, K. Jin, And D. Wu, “Applied Surface Science Nanophase-Separated
Ternary Pdagcu Nanotubes With Rich Interfaces For Enhanced Formic Acid Oxidation
Reaction,” Vol. 680, No. September 2024, 2025.
[38] K. Lekganyane, M. Khodja-Moller, D. Mkhonto, And R. Mostert, “The Development
Of Platinum Alloys For Jewellery Applications By Considering Both The Conventional
And The Advanced Manufacturing Techniques-Review Paper,” Vol. 01005, 2024.
[39] M. P. Milz Et Al., “^ Đŝğŷđğ Ŝƌğđƚ Sciencedirect Influence Of Twin Wire Arc Spraying
And Machine Hammer Peening Influence Of Twin Wire Arc Spraying And Machine
Hammer Peening On The Corrosion Fatigue Of Znal4 Coatings On S355 + C On The
Corrosion Fatigue Of Znal4 Coatings On,” Procedia Struct. Integr., Vol. 42, No. 2019,
Pp. 830–837, 2022, Doi: 10.1016/J.Prostr.2022.12.105.
[40] M. S. Joun Et Al., “Characterization Of Az31b , Az61a And Az80a Magnesium Alloys
With An Emphasis On Temperature Compensation For Their Application To A Hot
Forging,” Vol. 84, No. October, Pp. 764–785, 2022, Doi:
10.1016/J.Jmapro.2022.10.054.
[41] B. Yelamasetti Et Al., “Mechanical Characterization And Microstructural Evolution Of
Inconel 718 And Ss316l Tig Weldments At High Temperatures,” J. Mater. Res.
Technol., Vol. 32, No. July, Pp. 196–207, 2024, Doi: 10.1016/J.Jmrt.2024.07.157.
[42] S. Zhang Et Al., “Materials Science & Engineering A Comparison Study Of
Microstructure And Mechanical Properties Of Standard And Direct-Aging Heat Treated
Superalloy Inconel 706,” Mater. Sci. Eng. A, Vol. 839, No. 98, P. 142836, 2022, Doi:
10.1016/J.Msea.2022.142836.
[43] B. Fogagnolo, J. M. Paiva, M. C. R. Guimaraes, S. C. Veldhuis, And A. E. Diniz,
“Evaluation Of Milling Parameters On The Surface Integrity Of Welded Inconel 625,”
2022, Doi: 10.1016/J.Jmrt.2022.08.033.
[44] H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, And D. Aspinwall, “Rapid
Machining Of Hardened Aisi H13 And D2 Moulds , Dies And Press Tools,” Vol. 135,
Pp. 301–311, 2003.
[45] X. Wang, Y. Tao, Y. Zhou, S. Wen, And Y. Shi, “Unraveling The Dual Cracking
Mechanism Of 316l / Cusn10 Heterostructures Fabricated By Laser Powder Bed
Fusion,” J. Mater. Res. Technol., Vol. 31, No. July, Pp. 4073–4087, 2024, Doi:
10.1016/J.Jmrt.2024.07.148.
[46] H. L. Hong, Q. Wang, C. Dong, And P. K. Liaw, “Using A Short-Range-Order Cluster
Model :,” Pp. 10–13, 2014, Doi: 10.1038/Srep07065.
[47] W. S. Cunningham Et Al., “Materials Science & Engineering A Alloying Effects On The
Microstructure And Properties Of Laser Additively Manufactured Tungsten Materials,”
Mater. Sci. Eng. A, Vol. 914, No. August, P. 147110, 2024, Doi:
10.1016/J.Msea.2024.147110.
[48] Z. Tong Et Al., “In-Vitro Corrosion And Biocompatibility Of Additively Manufactured Biodegradable Molybdenum,” Acta Biomater., Vol. 191, No. November 2024, Pp. 66–
79, 2024, Doi: 10.1016/J.Actbio.2024.11.019.
[49] T. Vompe, G. G. Goviazin, O. Dolev, L. Rudnik, And A. Katz-Demyanetz, “Sintering
Of Additively Manufactured Zirconium By Moldjet Technology,” Powder Technol.,
Vol. 436, No. November 2023, P. 119494, 2024, Doi: 10.1016/J.Powtec.2024.119494.
[50] N. S. Hmeidat Et Al., “Reactive Extrusion Of Frontally Polymerizing Continuous
Carbon Fiber Reinforced Polymer Composites,” Compos. Part A Appl. Sci. Manuf., Vol.
190, No. November 2024, P. 108609, 2025, Doi: 10.1016/J.Compositesa.2024.108609.
[51] A. K. Gupta, R. Kiran, S. Zafar, And H. Pathak, “Effect Of Hygrothermal Ageing On
The Mechanical Properties Of Glass Fiber Reinforced Polymer Composite:
Experimental And Numerical Approaches,” Mater. Today Commun., Vol. 41, No.
November, Pp. 0–3, 2024, Doi: 10.1016/J.Mtcomm.2024.111060.
[52] S. A. Kareem Et Al., “Aluminium Matrix Composites Reinforced With High Entropy
Alloys: A Comprehensive Review On Interfacial Reactions, Mechanical, Corrosion,
And Tribological Characteristics,” J. Mater. Res. Technol., Vol. 30, No. May, Pp. 8161–
8186, 2024, Doi: 10.1016/J.Jmrt.2024.05.153.
[53] J. Jun Sha Et Al., “Improved Wettability And Mechanical Properties Of Metal Coated
Carbon Fiber-Reinforced Aluminum Matrix Composites By Squeeze Melt Infiltration
Technique,” Trans. Nonferrous Met. Soc. China (English Ed., Vol. 31, No. 2, Pp. 317–
330, 2021, Doi: 10.1016/S1003-6326(21)65498-5.
[54] J. Wei Et Al., “Friction And Wear Characteristics Of Carbon Fiber Reinforced Silicon
Carbide Ceramic Matrix (Cf/Sic) Composite And Zirconia (Zro2) Ceramic Under Dry
Condition,” Tribol. Int., Vol. 119, No. October 2017, Pp. 45–54, 2018, Doi:
10.1016/J.Triboint.2017.10.023.
[55] S. Qu, Y. Gong, Y. Yang, X. Wen, And G. Yin, “Grinding Characteristics And Removal
Mechanisms Of Unidirectional Carbon Fibre Reinforced Silicon Carbide Ceramic
Matrix Composites,” Ceram. Int., Vol. 45, No. 3, Pp. 3059–3071, 2019, Doi:
10.1016/J.Ceramint.2018.10.178.
[56] A. Stark, A. Paddock, T. Nguyen, And K. Woodham, “Stark 1 37 Th Annual Small Satellite Conference Windform® Xt 2.0 Use As 3u Cubesat Primary Structure,” Vol.7909, Pp. 1–13.
[57] S. Sharafi, M. H. Santare, J. Gerdes, And S. G. Advani, “Extrusion-Based Additively Manufactured Paek And Paek/Cf Polymer Composites Performance: Role Of Process Parameters On Strength, Toughness And Deflection At Failure,” J. Compos. Sci., Vol. 7, No. 4, 2023, Doi: 10.3390/Jcs7040157.
[58] H. Nasreddine, A. Djerbi, T. Salem, N. Dujardin, And L. Gautron, “Impact Of BioSourced Material Type And Content On Thermal Insulation And Mechanical Strength Of Geopolymer Composites,” Constr. Build. Mater., Vol. 452, No. November, 2024, Doi: 10.1016/J.Conbuildmat.2024.138932.
[59] A. Raza, S. Waqar Ahmed, A. Hassan, K. Altaf, H. Wei, And G. Hussain, “Investigation Of The Process-Induced Defects In Metal Fused Deposition Modeling Process For Ultrafuse 316l Stainless Steel,” Digit. Manuf. Technol., Vol. 3, No. 2, Pp. 250–261, 2023, Doi: 10.37256/Dmt.3220233447.
[60] R. Gayatri Et Al., “Polymer-Based Nanocomposite Membranes For Industrial
Wastewater Treatment: A Review,” J. Environ. Chem. Eng., Vol. 12, No. 5, P. 113276,
2024, Doi: 10.1016/J.Jece.2024.113276.
[61] Z. Zhang, J. Wang, L. Hou, D. Zhu, H. J. Xiao, And K. Wang, “Graphene/Carbohydrate
Polymer Composites As Emerging Hybrid Materials In Tumor Therapy And
Diagnosis,” Int. J. Biol. Macromol., Vol. 287, No. November 2024, P. 138621, 2025,
Doi: 10.1016/J.Ijbiomac.2024.138621.
[62] C. T. Ng And L. Susmel, “Static Assessment Of Notched Additively Manufactured
Acrylonitrile Butadiene Styrene (Abs),” Procedia Struct. Integr., Vol. 28, No. 2019, Pp.
627–636, 2020, Doi: 10.1016/J.Prostr.2020.10.073.
[63] J. Lee, N. A. Patil, And J. H. Park, “Correlating Microstructural And Rheological
Variations In Acrylonitrile-Butadiene-Styrene (Abs) With Interlayer Bond Formation In
Material Extrusion Additive Manufacturing,” Addit. Manuf., Vol. 96, No. November, P.
104553, 2024, Doi: 10.1016/J.Addma.2024.104553.
[64] A. Cao, D. Wan, C. Gao, And C. W. Elverum, “A Novel Method Of Fabricating
Designable Polylactic Acid (Pla)/Thermoplastic Polyurethane (Tpu) Composite
Filaments And Structures By Material Extrusion Additive Manufacturing,” J. Manuf.
Process., Vol. 118, No. January, Pp. 432–447, 2024, Doi:
10.1016/J.Jmapro.2024.03.015.
[65] M. Petousis Et Al., “Valorization Of Recycled Fine Powder Glass (Rfpg) In Additive
Manufacturing: Optimization Of The Rfpg Content In Polyethylene Terephthalate
Glycol (Petg) And Multi-Response Analysis,” Clean. Mater., Vol. 14, No. September,
2024, Doi: 10.1016/J.Clema.2024.100271.
[66] A. Haleem And M. Javaid, “Polyether Ether Ketone (Peek) And Its Manufacturing Of
Customised 3d Printed Dentistry Parts Using Additive Manufacturing,” Clin. Epidemiol.
Glob. Heal., Vol. 7, No. 4, Pp. 654–660, 2019, Doi: 10.1016/J.Cegh.2019.03.001.
[67] A. Curmi, A. Rochman, And J. Buhagiar, “Influence Of Polyether Ether Ketone (Peek)
Viscosity On Interlayer Shear Strength In Screw Extrusion Additive Manufacturing,”
Addit. Manuf., Vol. 84, No. December 2023, P. 104086, 2024, Doi:
10.1016/J.Addma.2024.104086.
[68] M. Daly, M. Chihi, C. Bouraoui, And M. Tarfaoui, “Advancing Composite Materials: Exploring Thermomechanical Properties Of Aerosil/Polycarbonate Composites Via Additive Manufacturing,” J. Manuf. Process., Vol. 131, No. June, Pp. 1770–1783, 2024,Doi: 10.1016/J.Jmapro.2024.10.003.
[69] N. Garg, V. Rastogi, And P. Kumar, “Process Parameter Optimization On The Dimensional Accuracy Of Additive Manufacture Thermoplastic Polyurethane (Tpu) Using Rsm,” Mater. Today Proc., Vol. 62, Pp. 94–99, 2022, Doi: 10.1016/J.Matpr.2022.02.309.
[70] N. Kumar, P. K. Jain, P. Tandon, And P. Mohan Pandey, “Experimental Investigations On Suitability Of Polypropylene (Pp) And Ethylene Vinyl Acetate (Eva) In Additive Manufacturing,” Mater. Today Proc., Vol. 5, No. 2, Pp. 4118–4127, 2018, Doi:10.1016/J.Matpr.2017.11.672.
[71] M. Fatima Ezzahrae, A. Nacer, E. Latifa, Z. Abdellah, I. Mohamed, And J. Mustapha,
“Thermal And Mechanical Properties Of A High-Density Polyethylene (Hdpe)
Composite Reinforced With Wood Flour,” Mater. Today Proc., Vol. 72, Pp. 3602–3608,
2023, Doi: 10.1016/J.Matpr.2022.08.394.
[72] S. M. Elghnam, Y. H. Abdelalim, And M. A. Hamad, “Influence Of Weathering
Exposure On Uv Light Absorption In Low Density Polyethylene Ldpe Grad-La071,” J.
Mater. Res. Technol., Vol. 19, Pp. 1493–1496, 2022, Doi: 10.1016/J.Jmrt.2022.05.096.
[73] Y. Lv, W. Thomas, R. Chalk, A. Hewitt, And S. Singamneni, “Experimental Evaluation
Of Polyphenylsulfone (Ppsf) Powders As Fire-Retardant Materials For Processing By
Selective Laser Sintering,” Polymers (Basel)., Vol. 13, No. 16, 2021, Doi:
10.3390/Polym13162704.
[74] I. I. Feier Et Al., “Design And Evaluation Of Additively Manufactured Polyetherimide
Orbital Debris Shielding For Spacecraft,” Int. J. Impact Eng., Vol. 196, No. October
2024, P. 105150, 2025, Doi: 10.1016/J.Ijimpeng.2024.105150.
[75] M. Matus-Aguirre, B. Cosson, C. Garnier, F. Schmidt, A. C. Akué-Asséko, And F.
Chabert, “Characterization And Modeling Of Laser Transmission Welded
Polyetherketoneketone (Pekk) Joints: Influence Of Process Parameters And Annealing
On Weld Properties,” J. Adv. Join. Process., Vol. 10, No. June, P. 100252, 2024, Doi:
10.1016/J.Jajp.2024.100252.
[76] N. Vidakis Et Al., “Polyvinyl Alcohol As A Reduction Agent In Material Extrusion
Additive Manufacturing For The Development Of Pharmaceutical-Grade
Polypropylene/Silver Nanocomposites With Antibacterial Properties,” Mater. Today
Commun., Vol. 39, No. May, P. 109366, 2024, Doi: 10.1016/J.Mtcomm.2024.109366.
[77] B. Guner, Y. E. Bulbul, And N. Dilsiz, “Recycling Of Polyvinyl Butyral From Waste
Automotive Windshield And Fabrication Of Their Electrospun Fibrous Materials,” J.
Taiwan Inst. Chem. Eng., Vol. 132, P. 104136, 2022, Doi: 10.1016/J.Jtice.2021.11.003.
[78] Z. M. Ayalew, X. Guo, And X. Zhang, “Synthesis And Application Of
Polyethyleneimine (Pei)‐Based Composite/Nanocomposite Material For Heavy Metals
Removal From Wastewater: A Critical Review,” J. Hazard. Mater. Adv., Vol. 8, No.
June, P. 100158, 2022, Doi: 10.1016/J.Hazadv.2022.100158.
[79] F. H. Sangar, M. R. Farahpour, And Z. G. Tabatabaei, “Facile Synthesis Of 2-Hydroxy-
Β-Cyclodextrin/Polyacrylamide/Carbazole Hydrogel And Its Application For The
Treatment Of Infected Wounds In A Murine Model,” Int. J. Biol. Macromol., Vol. 267,
No. P1, P. 131252, 2024, Doi: 10.1016/J.Ijbiomac.2024.131252.
[80] H. Dutta, D. Veeman, And M. Vellaisamy, “Additively Manufactured Polymethyl
Methacrylate Lattice Structures: Effect Of 3d Hybridization On Compressive Strength,”
Mater. Lett., Vol. 377, No. October, P. 137487, 2024, Doi:
10.1016/J.Matlet.2024.137487.
[81] G. Pelin, M. Sonmez, And C. Pelin, “The Use Of Additive Manufacturing Techniques
In The Development Of Polymeric Molds : A Review,” Pp. 1–42, 2024.
[82] “Epictool. The Mold And Die Tooling Industry.” Doi: Available Online:Https://Epictool.Ca/The-Mold-And-Die-Tooling-Industry/.
[83] M. Kim And J. Hyuk, “Innovative Rapid Cooling Method For Injection Mold Using
Liquified Co 2,” Appl. Therm. Eng., Vol. 256, No. April, P. 124151, 2024, Doi:
10.1016/J.Applthermaleng.2024.124151.
[84] D. Kvaktun, F. Müller, And R. Schiffers, “Sciencedirect Investigation Of Transfer
Learning With Changing Machine , Mold And Material Combinations In Injection
Molding,” Procedia Cirp, Vol. 126, Pp. 715–720, 2024, Doi:
10.1016/J.Procir.2024.08.295.
[85] J. Volke, M. Reit, And H. Heim, “Parameter Recommendation For Injection Molding
Based On Similarity Analysis Of Injection Molded Parts,” J. Manuf. Process., Vol. 95,
No. April, Pp. 171–182, 2023, Doi: 10.1016/J.Jmapro.2023.03.072.
[86] J. E. Kanyo, S. Scha, R. S. Uwanyuze, And K. S. Leary, “Journal Of The European
Ceramic Society An Overview Of Ceramic Molds For Investment Casting Of Nickel
Superalloys,” Vol. 40, No. March, Pp. 4955–4973, 2020, Doi:
10.1016/J.Jeurceramsoc.2020.07.013.
[87] J. Baasch, L. Windisch, F. Koch, S. Linke, E. Stoll, And C. Schilde, “Acta Astronautica
Regolith As Substitute Mold Material For Aluminum Casting On The Moon,” Acta
Astronaut., Vol. 182, No. January, Pp. 1–12, 2021, Doi:
10.1016/J.Actaastro.2021.01.045.
[88] P. Michels, D. Grommes, A. Oeckerath, D. Reith, And O. Bruch, “An Integrative
Simulation Concept For Extrusion Blow Molded Plastic Bottles,” Finite Elem. Anal.
Des., Vol. 164, No. January, Pp. 69–78, 2019, Doi: 10.1016/J.Finel.2019.06.008.
[89] P. Gao Et Al., “Thermo-Mechanical Recycling Via Ultrahigh-Speed Extrusion Of FilmGrade Recycled Ldpe And Injection Molding,” Sustain. Mater. Technol., Vol. 38, No.
August, P. E00719, 2023, Doi: 10.1016/J.Susmat.2023.E00719.
[90] D. Rio-Santos, C. De Torre-Gamarra, A. J. Fern, B. Levenfeld, And A. Varez,
“Optimisation Of Powder Extrusion Moulding Process For Thick Ceramic Electrodes
Of Licoo 2 For Enhanced Energy-Density Lithium-Ion Batteries,” Vol. 50, No. April,
Pp. 32954–32963, 2024, Doi: 10.1016/J.Ceramint.2024.06.109.
[91] Z. Ortega, P. Douglas, P. R. Hanna, J. Kelly-Walley, And M. Mccourt, “Influence Of
Mold Pressurization On Cycle Time In Rotational Molding Composites With Welded
Ignimbrite As Loading,” Compos. Commun., Vol. 45, No. October 2023, P. 101797,
2024, Doi: 10.1016/J.Coco.2023.101797.
[92] I. Model, R. Molding, H. Abdulhussain, R. Michael, R. Thompson, And M. R.
Thompson, “Sciencedirect Utilizing Neural Networks Networks For For Image-Based
Model A Networks A A Predictive Controller Of A Batch Rotational Molding Process
Process Process,” Ifac Pap., Vol. 58, No. 14, Pp. 470–475, 2024, Doi:
10.1016/J.Ifacol.2024.08.381.
[93] Z. Cai Et Al., “Numerical Simulation Of ‘ Sand-Like ’ Polymer Flow During Rotational
Moulding Using Smoothed Particle Hydrodynamics Method,” Appl. Math. Model., Vol.
124, No. August, Pp. 694–712, 2023, Doi: 10.1016/J.Apm.2023.08.013.
[94] P. Morampudi And S. Gurrapu, “Materials Today : Proceedings Modelling And Analysis Of A Customized Die For Blow Moulding Machine,” Mater. Today Proc., Vol.
62, Pp. 3306–3313, 2022, Doi: 10.1016/J.Matpr.2022.04.239.
[95] R. Miguel Et Al., “Overcoming Geometric Limitations In Metallic Glasses Through
Stretch Blow Molding,” Appl. Mater. Today, Vol. 19, P. 100567, 2020, Doi:
10.1016/J.Apmt.2020.100567.
[96] Y. Hak, K. Ram, W. Tae, D. Hyang, And Y. Suk, “Results In Materials Rapid Heating
Blow Molding Of Metallic Glasses By Infrared Heating,” Results Mater., Vol. 3, No.
November, P. 100045, 2019, Doi: 10.1016/J.Rinma.2019.100045.
[97] M. Barletta, C. Aversa, M. Puopolo, And S. Vesco, “Extrusion Blow Molding Of
Environmentally Friendly Bottles In Biodegradable Polyesters Blends,” Polym. Test.,
Vol. 77, No. January 2019, P. 105885, 2025, Doi:
10.1016/J.Polymertesting.2019.05.001.
[98] E. R. Dorp Et Al., “Process-Dependent Structural And Deformation Properties Of
Extrusion Blow Molding Parts,” Polym. Test., Vol. 77, No. February, P. 105903, 2019,
Doi: 10.1016/J.Polymertesting.2019.105903.
[99] S. Gupta, V. Uday, A. S. Raghuwanshi, S. Chowkshey, N. Das, And S. Suresh,
“Simulation Of Blow Molding Using Ansys Polyflow,” Apcbee Procedia, Vol. 5, Pp.
468–473, 2013, Doi: 10.1016/J.Apcbee.2013.05.079.
[100] H. Zou Et Al., “Microstructure And Mechanical Property Of High-Density 7075 Al
Alloy By Compression Molding Of Pom-Based Feedstock,” J. Mater. Res. Technol.,
Vol. 32, No. August, Pp. 4387–4399, 2024, Doi: 10.1016/J.Jmrt.2024.09.025.
[101] C. A. Grubb, D. J. Keffer, C. D. Webb, M. Kardos, H. Mainka, And D. P. Harper, “Paper
Fiber-Reinforced Polypropylene Composites From Nonwoven Preforms : A Study On
Compression Molding Optimization From A Manufacturing Perspective,” Compos. Part
A, Vol. 185, No. July, P. 108339, 2024, Doi: 10.1016/J.Compositesa.2024.108339.
[102] H. Sun, X. Fan, M. Zhan, J. Guo, And J. Zhang, “International Journal Of Mechanical
Sciences Mechanism Of Uneven Densification In Pbx Compression Molding,” Int. J.
Mech. Sci., Vol. 282, No. April, P. 109683, 2024, Doi: 10.1016/J.Ijmecsci.2024.109683.
[103] S. Feng, A. M. Kamat, And Y. Pei, “International Journal Of Heat And Mass Transfer
Design And Fabrication Of Conformal Cooling Channels In Molds : Review And
Progress Updates,” Int. J. Heat Mass Transf., Vol. 171, P. 121082, 2021, Doi:
10.1016/J.Ijheatmasstransfer.2021.121082.
[104] S. Singh, S. Ramakrishna, And R. Singh, “Material Issues In Additive Manufacturing:
A Review,” J. Manuf. Process., Vol. 25, Pp. 185–200, 2017.
[105] J. J. Lewandowski And M. Seifi, “Metal Additive Manufacturing: A Review Of
Mechanical Properties,” Annu. Rev. Mater. Res., Vol. 46, No. 1, Pp. 151–186, 2016.
[106] A. Z. A. Kadir, Y. Yusof, And M. S. Wahab, “Additive Manufacturing Cost Estimation Models—A Classification Review,” Int. J. Adv. Manuf. Technol., Vol. 107, Pp. 4033–4053, 2020.
[107] M. Baumers, P. Dickens, C. Tuck, And R. Hague, “The Cost Of Additive
Manufacturing: Machine Productivity, Economies Of Scale And Technology-Push,” Technol. Forecast. Soc. Change, Vol. 102, Pp. 193–201, 2016.
[108] X. Peng, L. Kong, J. Y. H. Fuh, And H. Wang, “A Review Of Post-Processing
Technologies In Additive Manufacturing,” J. Manuf. Mater. Process., Vol. 5, No. 2, P.
38, 2021.
[109] N. N. Kumbhar And A. V Mulay, “Post Processing Methods Used To Improve Surface
Finish Of Products Which Are Manufactured By Additive Manufacturing Technologies:
A Review,” J. Inst. Eng. Ser. C, Vol. 99, Pp. 481–487, 2018.
[110] H. X. Nguyen, H. Suen, B. Poudel, P. Kwon, And H. Chung, “Development Of An
Innovative, High Speed, Large-Scaled, And Affordable Metal Additive Manufacturing
Process,” Cirp Ann., Vol. 69, No. 1, Pp. 177–180, 2020.
[111] A. M. Rubenchik, W. E. King, And S. S. Wu, “Scaling Laws For The Additive
Manufacturing,” J. Mater. Process. Technol., Vol. 257, Pp. 234–243, 2018.
[112] B. J. Vogel, “Intellectual Property And Additive Manufacturing/3d Printing: Strategies
And Challenges Of Applying Traditional Ip Laws To A Transformative Technology,”
Minn. Jl Sci. Tech., Vol. 17, P. 881, 2016.
[113] A. Brown, M. Yampolskiy, J. Gatlin, And T. Andel, “Legal Aspects Of Protecting
Intellectual Property In Additive Manufacturing,” In Critical Infrastructure Protection
X: 10th Ifip Wg 11.10 International Conference, Iccip 2016, Arlington, Va, Usa, March
14-16, 2016, Revised Selected Papers 10, Springer, 2016, Pp. 63–79.
[114] J. Chang Et Al., “Advanced Material Strategies For Next-Generation Additive
Manufacturing,” Materials (Basel)., Vol. 11, No. 1, P. 166, 2018.
[115] K. R. Ryan, M. P. Down, And C. E. Banks, “Future Of Additive Manufacturing:
Overview Of 4d And 3d Printed Smart And Advanced Materials And Their
Applications,” Chem. Eng. J., Vol. 403, P. 126162, 2021.
[116] R. Huang, E. Ulu, L. B. Kara, And K. S. Whitefoot, “Cost Minimization In Metal
Additive Manufacturing Using Concurrent Structure And Process Optimization,” In
International Design Engineering Technical Conferences And Computers And
Information In Engineering Conference, American Society Of Mechanical Engineers,
2017, P. V02at03a030.
[117] J. Berk, Cost Reduction And Optimization For Manufacturing And Industrial
Companies. John Wiley & Sons, 2010.
[118] R. Parvanda And P. Kala, “Trends, Opportunities, And Challenges In The Integration
Of The Additive Manufacturing With Industry 4.0,” Prog. Addit. Manuf., Vol. 8, No. 3,
Pp. 587–614, 2023.
[119] S. Pancholi Et Al., “Transforming Additive Manufacturing With Artificial Intelligence:
A Review Of Current And Future Trends,” Arch. Comput. Methods Eng., Pp. 1–32,
2025.
[120] G. D. Goh, K. K. Wong, N. Tan, H. L. Seet, And M. L. S. Nai, “Large-Format Additive
Manufacturing Of Polymers: A Review Of Fabrication Processes, Materials, And
Design,” Virtual Phys. Prototyp., Vol. 19, No. 1, P. E2336160, 2024.
[121] S. Ford And M. Despeisse, “Additive Manufacturing And Sustainability: An
Exploratory Study Of The Advantages And Challenges,” J. Clean. Prod., Vol. 137, Pp. 1573–1587, 2016, Doi: Https://Doi.Org/10.1016/J.Jclepro.2016.04.150.
[122] R. Kawalkar, H. K. Dubey, And S. P. Lokhande, “A Review For Advancements In Standardization For Additive Manufacturing,” Mater. Today Proc., Vol. 50, Pp. 1983–1990, 2022.
[123] K. Rafi, A. Zhonghong Liu, M. Di Prima, P. Bates, And M. Seifi, “Regulatory And Standards Development In Medical Additive Manufacturing,” Mrs Bull., Vol. 47, No.1, Pp. 98–105, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Sustainable Engineering & Green Technologies

This work is licensed under a Creative Commons Attribution 4.0 International License.